32,932 research outputs found
Bell's inequality and the coincidence-time loophole
This paper analyzes effects of time-dependence in the Bell inequality. A
generalized inequality is derived for the case when coincidence and
non-coincidence [and hence whether or not a pair contributes to the actual
data] is controlled by timing that depends on the detector settings. Needless
to say, this inequality is violated by quantum mechanics and could be violated
by experimental data provided that the loss of measurement pairs through
failure of coincidence is small enough, but the quantitative bound is more
restrictive in this case than in the previously analyzed "efficiency loophole."Comment: revtex4, 3 figures, v2: epl document class, reformatted w slight
change
Recommended from our members
Mediated intimacy: Sex advice in media culture
The bold argument of Mediated Intimacy (Barker et al., 2018)1 is that media of various kinds play an increasingly important role in shaping people’s knowledge, desires, practices and expectations about intimate relationships. While arguments rage about the nature and content of sex and relationship education in schools, it is becoming clear that more and more of us – young and old – look not to formal education, or even to our friends, for information about sex, but to the media (Albury, 2016; Attwood et al., 2015). This is not simply a matter of media ‘advice’ in the form of self-help books, magazine problem pages, or online ‘agony’ columns – though these are all proliferating and are discussed at length in the book. It is also about the wider cultural habitat of images, ideas and discourses about intimacy that circulate through and across media: the ‘happy endings’ of romantic comedies; the ‘money shots’ of pornography; the celebrity gossip about who is seeing whom, who is ‘cheating’, and who is looking ‘hot’; the lifestyle TV about ‘embarrassing bodies’ or being ‘undateable’; the newspaper features on how to have a ‘good’ divorce or ‘ten things never to say on a first date’; the new apps that incite us to quantify and rate our sex lives, and so forth. These constitute the ‘taken for granted’ of everyday understandings of intimacy, and they are at the heart of Mediated Intimacy
A geometric proof of the Kochen-Specker no-go theorem
We give a short geometric proof of the Kochen-Specker no-go theorem for
non-contextual hidden variables models. Note added to this version: I
understand from Jan-Aake Larsson that the construction we give here actually
contains the original Kochen-Specker construction as well as many others (Bell,
Conway and Kochen, Schuette, perhaps also Peres).Comment: This paper appeared some years ago, before the author was aware of
quant-ph. It is relevant to recent developments concerning Kochen-Specker
theorem
Study on determining stability domains for nonlinear dynamical systems, II Quarterly progress report, 1 Aug. - 31 Oct. 1966
Stability domain determination for nonlinear dynamical syste
Rotorcraft convertible engine study
The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988
Is the transition redshift a new cosmological number?
Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an
expanding accelerating Universe at intermediate redshifts. This means that the
Universe underwent a transition from deceleration to acceleration phases at a
transition redshift of the order unity whose value in principle depends
on the cosmology as well as on the assumed gravitational theory. Since
cosmological accelerating models endowed with a transition redshift are
extremely degenerated, in principle, it is interesting to know whether the
value of itself can be observationally used as a new cosmic
discriminator. After a brief discussion of the potential dynamic role played by
the transition redshift, it is argued that future observations combining SNe
Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the
differential age of galaxies, as well as the redshift drift of the spectral
lines may tightly constrain , thereby helping to narrow the parameter
space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the
transition redshift have been added. New data by Planck and H(z) data have
been mentioned. New references have been adde
Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence
Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: points of occurrence (specific geographical coordinates where a species has been observed), and expert-prepared range maps. Each form has potential short-comings: range maps tend to overestimate the true occurrence of a species, whereas occurrence points (because of their frequent non-random spatial distribution) tend to underestimate it. Whereas previous comparisons of the two forms have focused on how they may differ when estimating species richness, less attention has been paid to the extent to which the two forms actually differ in their representation of a species’ environmental associations. We assess such differences using the globally distributed avian order Galliformes (294 species). For each species we overlaid range maps obtained from IUCN and point-of-occurrence data obtained from GBIF on global maps of four climate variables and elevation. Over all species, the median difference in distribution centroids was 234 km, and median values of all five environmental variables were highly correlated, although there were a few species outliers for each variable. We also acquired species’ elevational distribution mid-points (mid-point between minimum and maximum elevational extent) from the literature; median elevations from point occurrences and ranges were consistently lower (median −420 m) than mid-points. We concluded that in most cases occurrence points were likely to produce better estimates of underlying environmental variables than range maps, although differences were often slight. We also concluded that elevational range mid-points were biased high, and that elevation distributions based on either points or range maps provided better estimates
Experimenter's Freedom in Bell's Theorem and Quantum Cryptography
Bell's theorem states that no local realistic explanation of quantum
mechanical predictions is possible, in which the experimenter has a freedom to
choose between different measurement settings. Within a local realistic picture
the violation of Bell's inequalities can only be understood if this freedom is
denied. We determine the minimal degree to which the experimenter's freedom has
to be abandoned, if one wants to keep such a picture and be in agreement with
the experiment. Furthermore, the freedom in choosing experimental arrangements
may be considered as a resource, since its lacking can be used by an
eavesdropper to harm the security of quantum communication. We analyze the
security of quantum key distribution as a function of the (partial) knowledge
the eavesdropper has about the future choices of measurement settings which are
made by the authorized parties (e.g. on the basis of some quasi-random
generator). We show that the equivalence between the violation of Bell's
inequality and the efficient extraction of a secure key - which exists for the
case of complete freedom (no setting knowledge) - is lost unless one adapts the
bound of the inequality according to this lack of freedom.Comment: 7 pages, 2 figures, incorporated referee comment
Causal Quantum Theory and the Collapse Locality Loophole
Causal quantum theory is an umbrella term for ordinary quantum theory
modified by two hypotheses: state vector reduction is a well-defined process,
and strict local causality applies. The first of these holds in some versions
of Copenhagen quantum theory and need not necessarily imply practically
testable deviations from ordinary quantum theory. The second implies that
measurement events which are spacelike separated have no non-local
correlations. To test this prediction, which sharply differs from standard
quantum theory, requires a precise theory of state vector reduction.
Formally speaking, any precise version of causal quantum theory defines a
local hidden variable theory. However, causal quantum theory is most naturally
seen as a variant of standard quantum theory. For that reason it seems a more
serious rival to standard quantum theory than local hidden variable models
relying on the locality or detector efficiency loopholes.
Some plausible versions of causal quantum theory are not refuted by any Bell
experiments to date, nor is it obvious that they are inconsistent with other
experiments. They evade refutation via a neglected loophole in Bell experiments
-- the {\it collapse locality loophole} -- which exists because of the possible
time lag between a particle entering a measuring device and a collapse taking
place. Fairly definitive tests of causal versus standard quantum theory could
be made by observing entangled particles separated by light
seconds.Comment: Discussion expanded; typos corrected; references adde
- …