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Bell’s inequality and the coincidence-time loophole
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This paper analyzes the effects of time-dependence in the Bell inequality. A generalized inequality is derived
for the case when coincidence and non-coincidence is controlled by timing that depends on the detector settings.
Needless to say, this inequality is violated by quantum mechanics and by experimental data provided that the
loss of measurement pairs through failure of coincidence is small enough, but the quantitative bound is more
restrictive in this case than in the previously analyzed “efficiency loophole.”

PACS numbers: 03.65.Ud

The Bell inequality [1] and its descendants (see e.g.,
Ref. [2]) have been the main argument on the EPR-paradox
[3, 4] for the last forty years. A new research field of ‘exper-
imental metaphysics’ has formed, where the goal is to show
that the concept of local realism is inconsistent with quan-
tum mechanics, and ultimately with the real world. The ex-
periments which have been performed to verify this have not
been completely conclusive, but they point in a certain direc-
tion: Nature cannot be described by a local realist model (see
Ref. [5–7] for instance). The reason for saying “not been com-
pletely conclusive” is the existence of certain “loopholes” in
these experiments. There has been considerable discussion
in the literature on this (see Refs. [8–16] among others), and
this paper is motivated by recent claims (e.g., Ref. [14]) that
time-dependence has been omitted in the Bell inequality, so
that the Bell inequality is totally invalid. The present anal-
ysis shows that this is not the case, although one may find
that certain bounds are higher than one would naı̈vely expect.
Furthermore, the loophole can be closed with relative ease in
experiments, and indeedis in some modern experiments.

The situation is as follows: in the standard Bell setup (see
Fig. 1), we want to take into account that the time-correlation
is not perfect between results at one site and results at the
other. Usually, there is a “coincidence window” in which
events are counted as being simultaneous, even when there
is a finite (i.e., nonzero) time between them. There is a possi-
bility that, in this type of setup, the local setting may change
the time at which the local event happens. And this would
have implications; a certain local event may be simultaneous
with a remote event, or not, depending on the local detector
setting. The result will be that the simultaneity of two de-
tection events will depend onboth settings, even though the
underlying physical processes that control this are completely
local. We will examine this situation in detail and derive pre-
cise bounds for violation of the appropriate Bell inequality.

To perform the intended formal examination of this, we
need to put the hidden-variable model into formal language.
We arrive at a probabilistic model [20]. Here, the hidden vari-
able is a pointλ in a “sample space”Λ, the space of all possi-
ble values of the hidden variable. The measurement results are

Detector 1

a (or b)

Xa,c(λ )

Source

λ

Detector 2

c (or d)

X ′

a,c(λ )

FIG. 1: The Bell setup. There are two local parameters (“detector
settings”), one at each site, having one of have two values, denoteda
andb for one site, andc andd for the other. The RVs describing the
results are denoted, e.g.,Xa,c andX′

a,c, for the two sites.

described by random variables (RVs)X(λ ) which take their
values in the value spaceV, usually taken as{−1, +1} in the
spin-12 case (see Fig. 1). There is a probability measureP on
the spaceΛ, used to calculate the probabilities of the different
outcomes and the expectation valueE, where

E(X) =
∫

Λ
X(λ )dP(λ ) =

∫
Λ

XdP, (1)

suppressing the parantheses. We then obtain the expectation
of the product of the results asE(XX′), usually denoted “cor-
relation” in this context [21]. Finally, after usinglocality only
four RVs remain;A, B, C′ andD′, see below. Now, we have

Theorem 1 (The Clauser-Horne-Shimony-Holt (CHSH) in-
equality) The following three prerequisites are assumed to
hold except at a null set:

(i) Realism. Measurement results can be described by
probability theory, using two families of RVs, e.g.,

Xa,c : Λ→V

λ 7→ Xa,c(λ )
X′

a,c : Λ→V

λ 7→ X′
a,c(λ ).

(ii) Locality. A measurement result should be independent
of the remote setting, e.g.,

A(λ ) def= Xa,c(λ ) = Xa,d(λ )

C′(λ ) def= X′
a,c(λ ) = X′

b,c(λ ).
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(iii) Measurement result restriction.The results may only
range from−1 to+1,

V = {x∈ R;−1≤ x≤+1}.

Then ∣∣E(AC′)+E(AD′)
∣∣+ ∣∣E(BC′)−E(BD′)

∣∣≤ 2. (2)

The proof consists of simple algebraic manipulations inside
each of the two expressions on the right hand side, followed
by application of the triangle inequality on each expression.

Previous treatments have discussed several loopholes in this
inequality, but the most similar issue to the present is the “de-
tector efficiency” problem. A simple formalism to use is that
of Ref. [12], where inefficient detectors, or in more general
terms, inefficientmeasurement setupsare modeled by having
the measurement-result RVsundefinedat points inΛ where
no detection occurs. This means that, e.g., the RVsA andC′

will only be defined at subsets ofΛ denotedΛA andΛC′ , resp..
The averaging must now be restricted to the set where the RV
in question is defined, and the probability measure adjusted
accordingly. In the language of probability theory we need
theconditionalexpectation value

E(A|ΛA) =
∫

ΛA

XAdPA, (3)

using the conditional probability measure

PA(S) = P(S|ΛA) for all eventsS. (4)

In the detector efficiency case, the first correlation in the
CHSH inequality then isE(AC′|ΛA∩ΛC′), the expectation of
AC′ conditioned on both factors in the product being defined
(that both results are observed). This is the correlation that
would be obtained from an experimental setup where the co-
incidence counters are told to ignore single particle events.

In the present case, there is a slight difference. In a hidden-
variable model, the detection timesT andT ′ at the two sites
can be described as RVs that depend on the settings, e.g.,

Ta,c : Λ→ R
λ 7→ Ta,c(λ )

T ′
a,c : Λ→ R

λ 7→ T ′
a,c(λ ).

(5)

A “coincidence” then occurs when the two times differ by less
than some predetermined time interval∆T. In mathematical
language this corresponds to saying that coincidences occur
for certain values of the hidden variableλ , e.g., at the settings
a andc, values in the set

ΛAC′
def=

{
λ :

∣∣Ta,c(λ )−T ′
a,c(λ )

∣∣ < ∆T
}

. (6)

In the following, we will concentrate on the setΛAC′ (but it
does help to remember its origin), and this set can vary de-
pending on both detector settings. Note that no assumption

has to be made on the locality of the detection timesT andT ′

at the two sites; they may depend on both settings. While un-
physical, remember that we are concentrating on the resulting
statistics ofA, B,C′, andD′ here, and only use the times to find
coincidences. If it makes the reader feel better, he/she may use
an implicit locality assumption (Ta = Ta,c andT ′

c = T ′
a,c), but

that is of no consequence below.
The first correlation in the CHSH inequality then is

E(AC′|ΛAC′), the expectation ofAC′ conditioned on coinci-
dences for the settingsa andc. The original CHSH inequality
is no longer valid, and the reason can be seen in the start of
the proof where one wants to add∣∣∣E(AC′|ΛAC′)+E(AD′|ΛAD′)

∣∣∣
=

∣∣∣∣∫ΛAC′
AC′dPAC′ +

∫
ΛAD′

AD′dPAD′

∣∣∣∣. (7)

The integrals on the right-hand side cannot easily be added
when ΛAC′ 6= ΛAD′ , since we are taking expectations over
different ensemblesΛAC′ andΛAD′ , with respect to different
probability measures.

The problem here is that the ensemble on which the cor-
relations are evaluated changes with the settings, while the
original Bell inequality requires that they stay the same. In
effect, the Bell inequality only holds on the common part of
the four different ensemblesΛAC′ , ΛAD′ , ΛBC′ , andΛBD′ , i.e.,
for correlations of the form

E(AC′|ΛAC′ ∩ΛAD′ ∩ΛBC′ ∩ΛBD′). (8)

Unfortunately our experimental data comes in the form

E(AC′|ΛAC′), (9)

so we need an estimate of the relation of the common part to
its constituents:

δ = inf
settings

P(ΛAC′ ∩ΛAD′ ∩ΛBC′ ∩ΛBD′)
P(ΛAC′)

= inf
settings

P(ΛAD′ ∩ΛBC′ ∩ΛBD′ |ΛAC′).
(10)

This is a purely theoretical construct, not available in experi-
mental data, but we will relate it to experimental data below.
Anyhow, fixing this relative size, we can prove

Theorem 2 (The CHSH inequality with coincidence restric-
tion) The prerequisites (i–iii) of Theorem 1 are assumed to
hold except at a null set, as is

(iv) Coincident events.Correlations are obtained on subsets
of Λ, namely on

ΛAC′ , ΛAD′ , ΛBC′ , or ΛBD′ .

Then∣∣∣E(AC′|ΛAC′)+E(AD′|ΛAD′)
∣∣∣

+
∣∣∣E(BC′|ΛBC′)−E(BD′|ΛBD′)

∣∣∣≤ 4−2δ .
(11)
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Proof. The proof consists of two steps; the first part is similar
to the proof of Theorem 1, using the intersection

ΛI = ΛAC′ ∩ΛAD′ ∩ΛBC′ ∩ΛBD′ , (12)

on which coincidences occur for all relevant settings. This
ensemble may be empty, but only whenδ = 0 and then the
inequality is trivial, soδ > 0 can be assumed in the rest of the
proof. Now (i–iii) yields∣∣∣E(AC′|ΛI)+E(AD′|ΛI)

∣∣∣+ ∣∣∣E(BC′|ΛI)−E(BD′|ΛI)
∣∣∣≤ 2.

(13)

The second step is to translate this into an expression with
E(AC′|ΛAC′) and so on. For brevity, letΛO = ΛAD′ ∩ΛBC′ ∩
ΛBD′ and denote “set complement” by{. Then,ΛI = ΛO∩
ΛAC′ and

E(AC′|ΛAC′) =P(ΛO|ΛAC′)E(AC′|ΛO∩ΛAC′)

+P(Λ{
O|ΛAC′)E(AC′|Λ{

O∩ΛAC′).
(14)

We now have∣∣∣E(AC′|ΛAC′)−δE(AC′|ΛI)
∣∣∣

≤
∣∣∣P(Λ{

O|ΛAC′)E(AC′|Λ{
O∩ΛAC′)

∣∣∣
+

∣∣∣P(ΛO|ΛAC′)E(AC′|ΛO∩ΛAC′)−δE(AC′|ΛI)
∣∣∣

≤ P(Λ{
O|ΛAC′)E

(
|AC′|

∣∣Λ{
O∩ΛAC′

)
+

(
P(ΛO|ΛAC′)−δ

)
E

(
|AC′|

∣∣ΛI
)

≤ P(Λ{
O|ΛAC′)+P(ΛO|ΛAC′)−δ = 1−δ ,

(15)

which, together with Ineq. (13) and the triangle inequality,
yields the desired result after some simple manipulations.�

Let us now relate this to experimental quantities. In this
context, the quantity of greatest interest is the probability of
coincidence:

γ
def= inf

settings
P(ΛAC′). (16)

We now have

δ ≥ 4− 3
γ

(17)

because (Bonferroni)

P(ΛAD′ ∩ΛBC′ ∩ΛBD′ |ΛAC′) (18)

≥ P(ΛAD′ |ΛAC′)+P(ΛBC′ |ΛAC′)+P(ΛBD′ |ΛAC′)−2,

and

P(ΛBD′ |ΛAC′) =
P(ΛAC′ ∩ΛBD′)

P(ΛAC′)

=
P(ΛAC′)+P(ΛBD′)−P(ΛAC′ ∪ΛBD′)

P(ΛAC′)

≥ 1+
P(ΛBD′)−1

P(ΛAC′)
≥ 1+

γ−1
γ

= 2− 1
γ
.

(19)

Putting this into our modified CHSH inequality we arrive at∣∣∣E(AC′|ΛAC′)+E(AD′|ΛAD′)
∣∣∣

+
∣∣∣E(BC′|ΛBC′)−E(BD′|ΛBD′)

∣∣∣≤ 6
γ
−4.

(20)

The bound for violation by quantum mechanics here isγ >
3− 3√

2
≈ 0.8787, which is considerably higher than the corre-

sponding value for the detector-efficiency case,1√
2
≈ 0.7071.

Let us see whether this bound is necessary and sufficient.
At the same time, we answer the question if it would be pos-
sible to lower the bound by putting further natural constraints
on the model. This will be done by construction of anad
hoc model that will give the quantum predictions at the set-
tingsa = 0, b = π/2, c = π/4, andd = −π/4, and the addi-
tional natural constraints are: it will only use local data, even
for timing; the marginal distributions are correct; there is full
correlation if the settings are equal at the two sites; and the
coincidence probability is the same at our specified pairs of
settings.

0

1
r

0 π/2 π 3π/2 2π

+10

+1+1+1
−1

l
−10

−1+1−1
−1

θ

FIG. 2: Outcome pattern for the detectors. The subscripts are the
detection times. Thus+10 means outcome+1 at time 0.

The model is as follows: the hidden variableλ is a pair
(θ , r) of coordinates, uniformly distributed over the rectangle
indicated in Fig. 2. The local detector setting corresponds to a
shift in theθ -direction of the pattern, with wrap-around when
necessary. The result is obtained according to the diagram
(the subscript is the detection time which can be±1 or 0). To
make the behaviour interesting we choose∆T to be 3/2, so
that a time-difference of zero or one time unit(s) is a coinci-
dence while a time-difference of two time units will not be a
coincidence.

0

1
r

0 π/2 π 3π/2 2π

+++−

+++− ++

l

−−−+

−−−+ −−

θ

FIG. 3: Coincidences occur as follows: the events are truly coinci-
dent in the middle-gray areas, and since∆T > 1 events are “coin-
cident” in the other grey areas, but since∆T < 2 events are “non-
coincident” in the hatchmarked areas.

For example, for the settingsa = 0 andc = π/4 at the two
sites, there will be coincidences at theλs indicated in Fig. 3,
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so that the probability of coincidence is 3/4+ l/4, while the
probability of getting++ or −− is 3/4. For the settings
b = π/2 andd = −π/4 at the two sites, the probability of
coincidence would again be 3/4+ l/4, while the probability
of getting++ or−− would only bel/4, so that

E(AC′|ΛAC′) = E(AD′|ΛAD′)

= E(BC′|ΛBC′) =−E(BD′|ΛBD′) =
3− l
3+ l

.
(21)

Setting(3− l)/(3+ l) = 1/
√

2, i.e.,l = 3(3−2
√

2)≈ 0.5147
we obtain

γ =
3+ l

4
=

3+3(3−2
√

2)
4

= 3− 3√
2
, (22)

which saturates the derived coincidence probability bound.
This model does what we have asked of it so far, especially,
it violates the Bell inequality maximally. The model does not
have constant coincidence probability forall angular settings
but can easily be modified so that it does [22]. Furthermore,
the interference pattern is not sinusoidal, and delays are dis-
crete, but this will be a subject of further research (see e.g.,
Ref. [13]).

We have seen that a useful Bell inequality does hold if suf-
ficiently many events are simultaneous, in stark contrast to
claims to the opposite in, e.g., Ref. [14, 16]. That it needs to
be modified when events are allowed to drop from the statis-
tics is not surprising but to be expected, cf. previous analysis
in the low-efficiency case. It is perhaps more surprising that
the bound on the amount of coincidences is higher in this case
than in the efficiency case. The reason for this is that the set of
coincidences (“counted” events)ΛAC′ factors in the efficiency
case, i.e.,ΛAC′ = ΛA∩ΛC′ (see Ref. [12]), while here the set
cannot be factorized. Thus, the present treatment is a proper
generalization of the previous results. A major remaining
challenge is to extend the analysis to the situation when coin-
cidence, detectionandmemory loopholes (see Refs. [17, 18])
are all present.

Note that several modern experiments are not affected by
this loophole, such as the ion trap experiment by Rowe et
al [15], because there,all experimental runs produce coinci-
dences (although there,locality is not strictly enforced). In
the case of optical experiments that use a pulsed variant of
the common parametric down-conversion source of Ref. [19],
one can use the natural assumption that the setting-dependent
delays described byTa,c and T ′

a,c do not depend on the re-
lation between pulse length and pulse spacing. Then, if the
pulse (i.e., the driving pulse of the parametric downconverter)
is short in comparison to the pulse spacing, one can assume
that any delays that occur will not delay photons from the
time-window of one pulse to the next, or at least that this
will happen only with very low probability. Now, the driv-
ing pulse will provide a well-defined,pre-determinedcoinci-
dence window and this will, in effect, remove this loophole.
What remains is a lowered efficiency, because photons may

be delayed enough to arrive outside this coincidence window.
Proper selection of a somewhat longer window length may be
needed. In any case, using a pulsed source and making these
two natural assumptions will enable use of the previous lower
bound (e.g., from Ref. [12]).

In conclusion, we have shown that the coincidence loophole
is significantly more damaging than the well-studied detec-
tion problem. Fortunately, the damage can be quantified. The
results underline the importance of eliminating coincidence
post-selection in future pulsed experiments.
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