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Bell's inequality and the coincidence-time loophole
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This paper analyzes the effects of time-dependence in the Bell inequality. A generalized inequality is derived
for the case when coincidence and non-coincidence is controlled by timing that depends on the detector settings.
Needless to say, this inequality is violated by quantum mechanics and by experimental data provided that the
loss of measurement pairs through failure of coincidence is small enough, but the quantitative bound is more
restrictive in this case than in the previously analyzed “efficiency loophole.”

PACS numbers: 03.65.Ud

The Bell inequality [1] and its descendants (see e.g., g lorh) P clord)

Ref. [2]) have been the main argument on the EPR-paradox
[3, 4] for the last forty years. A new research field of ‘exper-
imental metaphysics’ has formed, where the goal is to show

that the concept of local realism is inconsistent with quang g, 1: The Bell setup. There are two local parameters (“detector
tum mechanics, and ultimately with the real world. The eX-gettings™), one at each site, having one of have two values, deaoted
periments which have been performed to verify this have noindb for one site, and andd for the other. The RVs describing the
been completely conclusive, but they point in a certain direcfesults are denoted, e.%ac andX; ¢, for the two sites.

tion: Nature cannot be described by a local realist model (see

Ref. [5-7] for instance). The reason for saying “not been com-

pletely conclusive” is the existence of certain “loopholes” in . . . .
these experiments. There has been considerable discussig scribed by random variables (RW§)4) which take their

in the literature on this (see Refs. [8-16] among others), an?fa.uelS in the vaIuI(:a.spimeTuhsually takent;al $b_'l% +1} ';}he
this paper is motivated by recent claims (e.g., Ref. [14]) thatP'N-2 case (see Fig. 1). There is a pro abllity meastion
time-dependence has been omitted in the Bell inequality, s € space, used to calculat_e the probabilities of the different
that the Bell inequality is totally invalid. The present anal- outcomes and the expectation vakievhere

ysis shows that this is not the case, although one may find _/ _/
that certain bounds are higher than one wouliy@lg expect. E(X)= ,\X(Mdp(l) a ,\Xdp’ (1)

Furthe_:rmore, thz I_o c()jpf;;l_e can be Cl?jsed with r_e'a“"e ease IQuppressing the parantheses. We then obtain the expectation
experiments, and indegslin some modern experiments. of the product of the results & XX'), usually denoted “cor-

_The situation is as fol!ows: in the standard _Bell setup (se%lation” in this context [21]. Finally, after usirigcality only
Fig. 1), we want to take into account that the time-correlatiory, ;- rvs remainA, B, C’ andD’, see below. Now, we have

is not perfect between results at one site and results at th’Fheorem 1 (The Clauser-Horne-Shimony-Holt (CHSH) in-

other. Usually, there is a “coincidence window” in which . . -
. . equality) The following three prerequisites are assumed to
events are counted as being simultaneous, even when ther .

old except at a null set:

is a finite (i.e., nonzero) time between them. There is a possi-
bility that, in this type of setup, the local setting may change (i) Realism. Measurement results can be described by
the time at which the local event happens. And this would probability theory, using two families of RVs, e.g.,

have implications; a certain local event may be simultaneous

Xae(A)

with a remote event, or not, depending on the local detector Xag: A=V
setting. The result will be that the simultaneity of two de- A = Xac(d)
tection events will depend omoth settingseven though the Xoc:N—V
underlying physical processes that control this are completely '

A= Xac(A).

local. We will examine this situation in detail and derive pre-
cise bounds for violation of the appropriate Bell inequality. (i) Locality. A measurement result should be independent

To perform the intended formal examination of this, we of the remote setting, e.g.,
need to put the hidden-variable model into formal language.
We arrive at a probabilistic model [20]. Here, the hidden vari- A(L) d:efxa’c(;L) =Xad(2)

able is a poinfl in a “sample spacel\, the space of all possi- , o def, ,
ble values of the hidden variable. The measurement results are C(A) =Xaclh) =Xpc(2).
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(iiiy Measurement result restrictionThe results may only has to be made on the locality of the detection tifiendT’

range from—1to+1, at the two sites; they may depend on both settings. While un-
physical, remember that we are concentrating on the resulting
V={xeR-1<x<+1}. statistics ofp, B, C, andD’ here, and only use the times to find
coincidences. If it makes the reader feel better, he/she may use
Then an implicit locality assumptionTg = Tac andT{ = T, ), but

that is of no consequence below.
The first correlation in the CHSH inequality then is
The proof consists of simple algebraic manipulations inside= (ACA\ac), the expectation oAC’ conditioned on coinci-
each of the two expressions on the right hand side, followed€nces for the settingsandc. The original CHSH inequality
by application of the triangle inequality on each expression. 1S N0 longer valid, and the reason can be seen in the start of
Previous treatments have discussed several loopholes in tHf3€ Proof where one wants to add
inequality, but the most similar issue to the present is the “de- ,
tector efficiency” problem. A simple formalism to use is that ‘E(ACI‘AAC/) +E(AD |AAU)‘
of Ref. [12], where inefficient detectors, or in more general
terms, inefficientmeasurement setupse modeled by having =
the measurement-result Rusdefinedat points in/A where
no detection occurs. This means that, e.g., the RéndC’ The integrals on the right-hand side cannot easily be added
will only be defined at subsets 6fdenoted\p andAq, resp..  When Apo # Aap, Since we are taking expectations over
The averaging must now be restricted to the set where the Rdifferent ensemblef\ s andAppy, with respect to different
in question is defined, and the probability measure adjustegrobability measures.
accordingly. In the language of probability theory we need The problem here is that the ensemble on which the cor-

|E(AC')+E(AD')| +|E(BC) —E(BD)| <2. (2

)

AC APy + / AD'dPyy ‘
N

Ao/ AD!

the conditionalexpectation value relations are evaluated changes with the settings, while the
original Bell inequality requires that they stay the same. In
E(AlAA) = / XadPa, (3) effect, the Bell inequality only holds on the common part of
N the four different ensembleSyc, Aap, Ao, andAgp, i.€.,

using the conditional probability measure for correlations of the form

Pa(S) = P(SA,) for all eventsS. 4) E(AC|Aac' NAap NAsc NAep)- (8)
In the detector efficiency case, the first correlation in theUnfortunater our experimental data comes in the form
CH/SH mgguallty then |E(AC’\/\A.0 Ac), the expectation qf E(AC|Axc), )
AC' conditioned on both factors in the product being defined
(that both results are observed). This is the correlation thado we need an estimate of the relation of the common part to
would be obtained from an experimental setup where the cats constituents:

incidence counters are told to ignore single particle events.
In the present case, there is a slight difference. In a hidden- 5= inf P(Aac 0o O Asc N Aep)
variable model, the detection tim@sandT’ at the two sites settings P(Aacr) (10)
can be described as RVs that depend on the settings, e.g., = seltft\i';gsp(/\Aw NAsc NNgp [Aac)-
Tac:A—R This is a purely theoretical construct, not available in experi-
A= Tac(A) mental data, but we will relate it to experimental data below.
T/ :A—R (5) Anyhow, fixing this relative size, we can prove

Theorem 2 (The CHSH inequality with coincidence restric-
tion) The prerequisites (i—iii) of Theorem 1 are assumed to

A “coincidence” then occurs when the two times differ by lesshold except at a null set, as is

than some predetermmed time mt_en&é’l. In mathematlcal (iv) Coincident eventLorrelations are obtained on subsets
language this corresponds to saying that coincidences occur of A, namely on

for certain values of the hidden varialilee.g., at the settings

A= Toc(h).

aandc, values in the set NAac, Napr, Neor, OF Agp.
def
Mo E{A: [Tac(h) - TLeA)| <AT). ()  Then
In the following, we will concentrate on the sahx (but it ’E(AC’|/\AC/) +E(AD|Aap)

does help to remember its origin), and this set can vary de- (11)

pending on both detector settings. Note that no assumption + ‘E(BC/V\BC’) —E(BD'|Agp)| < 4—26.




Proof. The proof consists of two steps; the first part is similar
to the proof of Theorem 1, using the intersection

N = Nac NAap NAge NN\gpy, (12)

on which coincidences occur for all relevant settings. This

ensemble may be empty, but only whén= 0 and then the
inequality is trivial, sod > 0 can be assumed in the rest of the
proof. Now (i—iii) yields

E(AC|A) + E(AD’|/\|)’ + ‘E(BC’|/\|) - E(BD’\/\|)‘ <2
(13)
The second step is to translate this into an expression wit
E(AC|Apc) and so on. For brevity, leho = Appy NAge N

Ngp and denote “set complement” By Then,A; = AoN
Aac and

E(AC |Aac) =P(AolAac )E(AC Ao NAx)

PPN EACIAS AAe). )
We now have
‘E(AC’\/\AC/) - 5E(AC’|/\|)’
< |PNBINAc E(ACIAS N )
+[Piolnsc)E(AC N0 Asc) ~SEACIA)| ;o

< P(AS|Aac )E (JAC |AS N Ase)
+ (P(/\O\AAC/) - 5) E(IAC||A)
< P(AS|Anc) + P(AolAnc) — 8 =18,

which, together with Ineq. (13) and the triangle inequality,
yields the desired result after some simple manipulationks.
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Putting this into our modified CHSH inequality we arrive at

[E(AC|Axc) +E(AD [Axo)|
(20)
n ’E(BC’|/\BC/) —E(BD|Agy)

Sy
Y

The bound for violation by quantum mechanics herg is
3— % ~ 0.8787, which is considerably higher than the corre-
sponding value for the detector-efficiency ca%g;u 0.7071.

Let us see whether this bound is necessary and sufficient.
At the same time, we answer the question if it would be pos-
gible to lower the bound by putting further natural constraints
on the model. This will be done by construction of ad
hoc model that will give the quantum predictions at the set-
tingsa=0,b==r/2,c=r/4, andd = —x /4, and the addi-
tional natural constraints are: it will only use local data, even
for timing; the marginal distributions are correct; there is full
correlation if the settings are equal at the two sites; and the
coincidence probability is the same at our specified pairs of
settings.

+1_ il —iluq

—ilg

0

:s1r‘/2 o

™

FIG. 2. Outcome pattern for the detectors. The subscripts are the
detection times. Thus 1y means outcome-1 at time 0.

The model is as follows: the hidden variableis a pair
(6,r) of coordinates, uniformly distributed over the rectangle
indicated in Fig. 2. The local detector setting corresponds to a

Let us now relate this to experimental quantities. In thisshift in the 8-direction of the pattern, with wrap-around when

context, the quantity of greatest interest is the probability o
coincidence:

& inf P(Aso). (16)
settings
We now have
3
§>4-= (17)
Y
because (Bonferroni)
P(Aap NN\eo NAgp [Aacr) (18)

> P(Aap|Aac) +P(Asc [Aac) +P(Asp [Aac) — 2,

and

P(Aac A
P(Aery|Ane) = P(Aac NA\sp)

P(Aac)
_ P(Aac) +P(Asp) —P(Aac UNeD ) (19)
P(Aac)
P(ABD’) -1 'y— 1 1
>1+ >1+ =2—-.
P(Aac) Y

fnecessary. The result is obtained according to the diagram
(the subscript is the detection time which candbeor 0). To
make the behaviour interesting we chodske to be 3/2, so
that a time-difference of zero or one time unit(s) is a coinci-
dence while a time-difference of two time units will not be a
coincidence.

r

+ | ++ ++ (A

= ++ -+

0

0

0 7‘72 ™ 37'—‘/2 2

FIG. 3: Coincidences occur as follows: the events are truly coinci-
dent in the middle-gray areas, and sikE > 1 events are “coin-
cident” in the other grey areas, but sind& < 2 events are “non-
coincident” in the hatchmarked areas.

For example, for the settings= 0 andc = &/4 at the two
sites, there will be coincidences at the indicated in Fig. 3,
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so that the probability of coincidence ig8+1/4, while the  be delayed enough to arrive outside this coincidence window.
probability of getting++ or —— is 3/4. For the settings Proper selection of a somewhat longer window length may be
b= /2 andd = —n/4 at the two sites, the probability of needed. In any case, using a pulsed source and making these
coincidence would again be/8+ /4, while the probability two natural assumptions will enable use of the previous lower
of getting++ or —— would only bel /4, so that bound (e.g., from Ref. [12]).

o /
E(AC|Aac) = E(AD'|Anp) In conclusion, we have shown that the coincidence loophole

— E(BC|Ase) = —E(BD/|Agpy) = 3*|. (21) is significantly more damaging than the well-studied detec-
3+1 tion problem. Fortunately, the damage can be quantified. The

. . results underline the importance of eliminating coincidence
stitggi(lﬁ]_ /@+1)=1/V2,ie.l =3(3-2v2) ~ 05147 post-selection in future pulsed experiments.

_ 3+l :3+3(3—2ﬁ):3_i 22)
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