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ABSTRACT

This second quarterly progress report discusses results ob-
tained during the period August 1, 1966 to October 31, 1966 under
Contract NAS 8-20306, '"Study on Determining Stability Domains for
Nonlinear Dynamical Systems," Particular items discussed are:

experimental results obtained via the algorithm developed during

‘the previous quarter; reformulation of the algorithm to avoid

computational difficulties encountered during the experiments;
development of a parameterization of the set of positive definite
n x n matrices; and analysis of a system with time dependent
closed loop guidance. Plans for research during the last phase

of the contract are outlined.
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INTRODUCTION

This second quarterly report discusses the work carried out
during the period August 1, 1966 to October 31, 1966 under Contract
NAS 8-20306, ''Study on Determining Stability Domains for Nonlinear
Dynamical Systems,'" Our activities during this period were de-
voted to continuing the experimental investigation of the algorithm
described in Ref. 1, reformulating the algorithm to circumvent
observed computational difficulties, developing a parameterization
of the set of positive definite n x n matrices, and analyzing

a system with time dependent closed loop guidance.
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EXPERIMENTAL RESULTS

As in the previous quarterly report (Ref. 1), we will only
report on the qualitative aspects of the results of our numerical
experiments. During the past quarter we devised a subroutine for
obtaining an initial search point on the constraint locus V=0,
This alleviated some of the sensitivity of the success of the
computation to the initial search point. However, in .the case
of the Van der Pol equation, the locus V = 0 has two pairs of
branches that are not symmetric, and the success of the computa-
tion depends on which pair of branches the initial point is on,
In an attempt to circumvent this situation, we have reformulated
the function to be minimized, (This reformulation is described

in the following section.)

We also investigated whether using the quadratic part of the
derivative of the optimal quadratic V as the arbitrary function
in Zubov's equation would yield an improved estimate of the domain
of attraction via the fourth order solution to Zubov's equation.
The result was negative for the Duffing equation and positive for

the Van der Pol equation.

Reformulation of the Numerical Algorithm

In Refs, 1 and 2 an algorithm for computing an estimate of
the domain of attraction of a quasi-linear dynamical system was
given, The algorithm consisted of two steps: 1) given a set of
function parameters o (the elements of Q), compute x such

that V(x,a) is minimum on V(x,a) = 0 (i.e.,

2(a) = V(x°,a) = min JV(x,oc) + kﬁz(g,a)} (1)

]

x#0
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is used to solve this stage numerically); and 2) find o such
that the figure described by V(x,a°) = £(a°) has the largest

volume (i.e., find a° such that

iz /2
(1) ()

(det P(a°)>% (det P(a))g

(2)

for all allowable a). This second step is carried out numeri-
cally by describing the Q-matrix in a parametric form, in
terms of a, which guarantees that the matrix is positive defi-
nite (given appropriate restrictions on a) and by computing
£(a) from Eq. (1) and P(a) from

ATP(a) + P()A = - Qo) (3)

where A is the matrix of the linear part of the dynamical

equations.

This two stage optimization, in which one computes suc-
cessively better values of x and a, does not work well for
the Van der Pol problem, Apparently, a relative insensitivity
of the area of the estimate to a and the existence of four
branches (two symmetric pairs) of the locus V(x,a) = 0
cause the observed difficulties in the computation of an
estimate of the domain of attraction. In order to alleviate
these difficulties and to make the algorithm more efficient,
we have reformulated it as a single minimization over x and

a, simultaneously.

Consider that the problem is to compute a constrained mini-
mum of V relative to x and a constrained minimum of the area

relative to a. This can be accomplished by recognizing that
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the content of the figure described by V(x,a) < £(a) 1is pro-
, -1
portional to (z(a)>n/2 (det P(a)> 2., Then we can compute either

. j det P(a))? . l
min \ \‘n/Z + k1V(X,a) + k2V (X,C!.) + k3g(a)( (4)

X, o L(Z(o&)/ ’/

N

or

(’3(0‘)>n/2 o2 \-1 L
max T+ Cy(V(x,a) + C,07(x,0))7" + Cg(@)), (5)
X, O (det P(oc))2

| f
where we have used the penalty formulation for handling the con-
straints ﬁ(x,a) =0 and Q positive definite (accounted for by
g(a)). Cursory examination indicates that x = 0, the trivial
solution, is the global solution of Eq. (5); this is not true for

Eq. (4), and thus only Eq. (4) is considered further,

A computer program has been written to compute Eq. (4) for
the Van der Pol equation by using the Min-All algorithm developed
by McGill and Taylor. Unfortunately, we do not have sufficient

data to draw conclusions about this formulation at this time.,

Parameterization of the Set of Positive Definite Matrices

The stability analysis algorithm described in Refs, 1 and 2
requires the generation of positive definite n x n matrices for
the analysis of n-dimensional quasi-linear dynamical systems,
The brute force approach is to form an n x n symmetric matrix

and then apply the determinantal test (Ref., 3) to determine if it

is positive definite. This procedure requires the arbitrary choice

of EﬁEEi_ll matrix elements and then the evaluation of the de-

terminants of the n-principal minors of the matrix., However, it
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does not provide information on how to correct a candidate matrix
that fails the test for positive definiteness. Therefore it would
be desirable to generate the matrix by a procedure that guarantees
the matrix is positive definite and spans the entire set of positive
definite matrices, In this section we develop such a procedure
based upon the work of Murnaghan (Ref. 4) on the parameterization

of the group of unitary matrices.

It is well known (Ref. 3) that all real symmetric matrices are
orthogonally similar to a diagonal matrix, and that all positive
definite (pd) matrices are then orthogonally similar to a diagonal

matrix with positive diagonal elements; i.e., let P be pd, then

P =S'AS , (6)

where
A = diag {)\1’ 7\2, esey )\n}

A>0 , 1=1,2, cusm (7

S°S

il
o
-

Thus the parameterization of all pd matrices P 1is
reduced to the parameterization of the group of orthogonal

matrices 8.

In Ref. 4 Murnaghan proves that the parameterization
of the group of n x n unitary matrices U is accomplished

by the factorization

n-1 ‘
uv=0x [ u_ , (8)
k=1




’

where
i% i5 i5__ i
D = diag {e 1’ e 2, ceey € n 1, e n} > (9)
, n-1
2=k+1
2n - K)(k - 1
y = {28 )g_ )y 1,
P ='Qg'k)§k'1)+l+n-,z ,
-k - -
n _ (on 22)(k 1l+(n—z) ’
’
Uy 1L, 1i#k,t
ukk = cos 6
uzz = cos 6
Uy = (55) ¢ | (11)
Uiy T 0, 1#3, 1,5 #k,2
_ _ ~io _.
ukz = e sin 6
+ic .
(Y 2k + e sin 6 ,

TLO<T, -F<o<T, ~556<%, -T<o<T .

The factorization of the group of orthogonal matrices is im-
mediately obtained by requiring U to be real; i.e., 5 =0=0,

o = + 7T, T P < T s k #n, and -%‘g 6 < % - In particular,
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n:l
S = D1 X ;i Sk , (12)
k=1
D, = diag {1, cees 1, + 1} , (13)
, n=1
S, = { U 6 0 1
k \)c:TlL-l k,Z( U-’O)> X Ukn((Pk’ ) ’ (14)
0= (2n - k -22)(k - 1) +n-2 .

(n - I%Ln = 2) thetas and

n-phis, or a total of 21932_11 + 1 parameters. The

This factorization contains

n-lambdas in Eq. (7) raise the number of parameters to
EﬁE?i_ll.+ 1 — one more than required. Thus if we re-
strict S to be a rotation matrix (i.e., choose o, = 0),

the number of parameters will be EﬁEzi;ll; the number re-~
quired to represent an arbitrary symmetric matrix. The choice
?, = 0 1is intuitively motivated by the consideration that we
wish to rotate and scale the ellipsoid associated with the pd
matrix and do not want to reflect coordinates or change the

handedness of the coordinate system.,

The factorization of a pd matrix of dimension three is

thus given by

P=SAS , (15)
where
Kl 0 0
A= 0 Kz 0 s (16)
0 0 A




and
S = 5p3(9) 81,(8p) Sy5(0) (7
1 0 0 \
323 = | 0 cP, =59, j s
\ /
\'\ /
\\0 59, cwz/
1 \‘
091 -561 0
819 = sel cel 6 |, (18)
0 0 1
\
coy 0 =89, \
- 2
813 = 0 1 0 | 2

S¢1 0 C@l//

""'S(P]_<7T:"'"'Sq’2<7r:'§'$91$§ >

Cpy = COs 9 , 5P; = sin P .

The factorization given here is similar to that conjectured in
Ref, 1.

Stability Analysis of a System with Time Dependent Closed Loop
Guidance

In their simplest form, booster guidance control systems are
described for finite intervals of time by nonlinear, nonautonomous

differential equations. In the more general case, the control laws
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are determined by iterative procedures and cannot be expressed

as simple functions of the state, Because the standard well-
known techniques of stability analysis are not readily applicable
to such systems, new techniques, or variations of present Liapunov

methods are being sought.

Initial research in this area has consisted of determining
the stability of a simple control system that contains character-
istics representative of the more complex booster guidance systems,
Specifically, we are concerned with guiding the motion of a particle
moving at constant speed in a plane in the presence of a constant

disturbance. The dynamics of the system are given by

X; = Vecosu
(19)

x, = Vo + vsinu ,

where v 1is the magnitude of the velocity of the particle
relative to the disturbance, Vo is the disturbance and u
is the direction of the velocity. The control law u(t) is
such that the particle is guided from the initial point
(xi,xg) to the final point (xi,xg) in minimum time in the
face of disturbances in the initial conditions. The problem
has been made more specific by letting v =1, Vo =1/2,

o 0 £ f
X =X, = 0 and X, =2, X, = 1,

In the absence of any disturbance in the initial éonditions,
the optimum control law for minimum time is u*(t) = 0, with the
corresponding trajectory xi = t, xg = t/2, and nominal time
Tf = 2, The initial disturbance is assumed to be randomly distri-
buted with a bivariate normal distribution of errors in initial
conditions with mean value 0 and standard deviation 0.1, The

control law is assumed to be linear, time varying, and of the form
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w) = G0+ py () [x,(0) -G+ py(0) [x,00) ~50)] , 20
where

Py = Py t Pyt » and

Py = Pyp * Pyyt (21)

For the specific problem considered, with

= 0,153 = 0,090

P10 P11
(22)

= -0,305

-0.195 9

Pyo Py

the mean square miss of the target point (2,1) is 0.00139;
the resulting expected final time is 2,00287.

The stability problem for the system described above may
be stated és follows: From what set of initial states (xg,xg)
will the particle reach a point in some e-neighborhood of the
final state (2,1), i.e.,

-2+ 6t -nice (23)

subject to the constraint T <M, where M 1is some constant.

In order to determine any characteristic of the problem
that might be useful in the development of a general stability
technique, an analysis of the system response was undertaken,
It was initially assumed that the control law u(t) was time

invariant, i.e.,

u(e) = pyg (% (8) - 5(0)) + pyg (x,(8) = 5(0)) . (24)

10
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Thus the system is described by

1

) (6) = cos [Pyg (xy(E) =€) + Byg (xy(E) = £/2)]
' (25)
%,(t) = % + sin [pyy (x(£) - £) + P, (x,(t) - t/z] .
Under the translation
y,(£) = x, () - ¢
(26)
¥,(8) = x,(t) - £/2
Eqs. (25) become
§3 = - 1+ cos [Ployl + onyz]
(27)

i | 1
Yo = 810 1Pyg¥1 + PygYy]

with the equilibrium solution Y1 =Y, = 0.

The loci of equilibrium points for Eqs. (27) are given by

P
y, = - Blg 1 + 2nm . (28)
20 Psro

Thus if the initial point (yi = xi s y; = x;) lies on the

locus, the solution for yl(t) and y2(t) will be constant

in time, and the trajectories in the xl,xz-plane will be given by

i

xl(t) t + xl(O)
(29)

x,(£) = t/2 + x,(0) .

11
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These trajectories are parallel to the optimum trajectory and

do not converge to the target point.

To find the complete trajectories in the yl,yz-plane, let
z(£) = Pyy1(E) + Pygy,(B) (30)

then from Egs. (27)
z(t) = ay;(t) + byg(t) =« a+4+ acos z+ b sin zA . (31)

Solving for z(t),

o lp
2(t) = 2 tan" " |20 —— (32)
10, _ . F20
where
k=1 -5 1 . (33)
Pyo 2

By substituting Eq. (32) into Eqs. (27), and integrating,

2p 1 P =Pyt -1 P
y,(t) = ——10 tan 110 (ke 207 1) - tan 1210 (k - 1)
1 2 4 o2 P20 P20
Pio T Pyo
(34)
( 2
‘ P -2Pp, At
i(k - 1%+ —%9 20
p P
20 10
+ 1In + 0
p2 + p2 Pyt 2 p%O 71(9)
10 T Pyo (ke - 1) + =5
P10

12
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2p .1 P . =Pyt .1 P
v, (t) = —20 _ tan 110 (ke 207 _ 1) - tan 110 (k - 1)
2 2 4 p2 P2 P20
P10 T Pog
(34 Cont.)
( 21
P -2p,,t
x - 1%+ —%9{ e 20
P P
- 20 4, 10, + 3,00 .
2, 2 o < 2 2 2
P10 ™ P20 (ke T20° _ 1)+ P20
\ 02
10

It is evident from Eqs. (33) and (34) that if the initial point

is on the equilibrium locus, Eqs. (34) reduce to
Y]_(t) = y]_(o) s Yz(t) = Yz(o) .

It can also be seen from Eqs. (34) or Eq. (32) that if the
initial point (yl(O), yz(O)) does not lie on the equilibrium
locus, and if Pyo is real and negative, then the final point
(yl(m), yz(w)> will lie on the equilibrium locus. Thus if
Pso is real and negative, every solution y(t) tends to the

set of points where

__Po . 2or
72 Pyo 'L Pyy

An approximate analysis of the response of the system when
the control law is time varying, as given by Eqgs. (20) and (21),
can be carried out if pl(t) and pz(t) are approximated by

“staircase" functions such that

13




P1(AT) = Pyg + Pyt

(35)
Py(nT) = Ppyg + PyynT .
th . .
In the n~ interval, i,e., (n - 1)T < £t < nT ,
Zn(T) = (Plo + P]_lnT) Yln('r) + (pzo + lenT) an(":)
| (36)
-1 | Pp(0D) 1
= 2 tan .
Pl(nT) -pz(nT)T
1 -%ke
n
for 0< 7t < T, The constant k ~1s given by
k =1 - L (37)
n © py@I) oz _(T) °
pz(nT) 2

By using Eqs. (36) and (37), the following linear difference

equation for kn results:

_ P11Py0 T P1gP23 (38)
n n n-1 " pl(nT) p2[(n -1)T] °

where

pil(n -1)T] py(aT) -p,[(n-1)TIT

"n = 3,0 p,l G - DT] © ' 39

Solving Eq. (38) yields




n n Ri
ky = M Fil| + . 1 (404)
1 1 [ F
RS
1
or
p21(n-l)T
_ |ProP2 D) =Py 7—)nT| o, P20¢P11P20 ~ P1oPsy)
n "~ {p,p; (nT) 0 P10
(40B)
Si"lZT\‘.
i (on t Py7 3 /1T]
Pz(nT) P2 (n-l)T\ ¢
i=1

The approximate location of the particle at any instant of

time is then specified by

n=- .
Yin(T) = Pin(T) + yiO(O) + z Pij (1) , 1i=1, 2, (41)

j=1
where
2p, (nT) P, (nT) -p, (nT) T p, (nT)
P, (1) = x t'l——-{l ke 2 1) - tan"t 2 k -1
in P2 (nT) + p5(nT) R COANY ) - eam Pz(nT)( ‘
or) (42)
T
(k 1)2 E%_fi__
i P, (nT) p7 (nT) -2p, (nT)<
= (-1) 2 2 In 2 2‘ €
Py (nT) + p;, (nT) ~p,(nT)7 P, (nT)
(kne -1> + 2
| Py (nT)

15
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The work carried out to date has essentially consisted of
analyzing the given system and has resulted in Eqs. (41) and (42).
It will now be necessary to study these equations along with the
trajectories that result from a computer simulation in order to de-
termine characteristics that will enable development of a stability
analysis technique that does not require a solution of the system
equations. To achieve this, our efforts in the next quarter will
be directed toward examining the possibility of applying standard
Liapunov stability techniques over each interval (n-1)TL t<nT,
and using the information obtained from the sub-intervals to con-

clude stability for the entire interval 0 < t < Tee

16




PLANS FOR FUTURE WORK

The emphasis during the last phase of this contract will be
upon formulating other examples that are representative of the
booster guidance stability problem, There are, however, other

particular areas that will receive some attention, viz,:

1, Formulation of a function whose global
minimum is achieved for the values of
state x and parameters o that produce
the optimal quadratic estimate of the do-

main of attraction.

2. Development of a procedure for successively
improving a given quadratic estimate by
modification of the Liapunov function via

geometric considerations,

3. Development of an efficient procedure for
solving the Liapunov matrix equation
(Eq. (4) of Ref. 2),

4, Numerical investigation of the guidance ex-
ample discussed earlier, and an analytical
investigation of whether stability results
over segments of the interval of operation
of the nonautonomous system can be combined
into a result for the entire interval of

concern,

17
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