40 research outputs found

    Biophysical Simulations Support Schooling Behavior of Fish Larvae Throughout Ontogeny

    Get PDF
    Schooling is very common in adult and juvenile fish, but has been rarely studied during the larval stage. Recent otolith micro-chemistry studies of coral reef fish have demonstrated that cohorts of larvae can move through similar paths and settle within a few meters one from another. However, little is known about the processes involved in the formation and maintenance of these cohorts. Here we use a biophysical modeling approach to examine whether local hydrodynamics, various individual behaviors, or larval schooling can explain cohesive patterns observed for Neopomacentrus miryae in the Gulf of Aqaba/Eilat (Red Sea), and whether schooling is feasible in terms of initial encounter probability and cohesiveness maintenance. We then examine the consequences of schooling behavior on larval settlement success and connectivity. Our results indicate that: (1) Schooling behavior is necessary for generating cohesive dispersal patterns, (2) Initial larval encounter of newly-hatched larvae is plausible, depending mainly on initial larval densities and patchiness, and (3) schooling behavior increases the rate of larval settlement while decreasing the percentage of realized connections. Together with mounting evidence of cohesive dispersal, this numerical study demonstrates that larval schooling throughout the pelagic phase is realistic, and has a significant effect on settlement success and connectivity patterns. Future research is needed to understand the mechanisms of fission-fusion dynamics of larval cohorts and their effect on dispersal. Our findings should be considered in future efforts of larval dispersal models, specifically in the context of marine connectivity and the planning of marine protected area networks

    Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3007, doi:10.1029/2007GB002958.We use both theory and ocean biogeochemistry models to examine the role of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the ocean by the soft-tissue pump, which we term (OCS soft ). OCS soft is linearly related to the inventory of remineralized nutrient, which in turn is just the total nutrient inventory minus the preformed nutrient inventory. In a system where total nutrient is conserved, atmospheric CO2 can thus be simply related to the global inventory of preformed nutrient. Previous model simulations have explored how changes in the surface concentration of nutrients in deepwater formation regions change the global preformed nutrient inventory. We show that changes in physical forcing such as winds, vertical mixing, and lateral mixing can shift the balance of deepwater formation between the North Atlantic (where preformed nutrients are low) and the Southern Ocean (where they are high). Such changes in physical forcing can thus drive large changes in atmospheric CO2, even with minimal changes in surface nutrient concentration. If Southern Ocean deepwater formation strengthens, the preformed nutrient inventory and thus atmospheric CO2 increase. An important consequence of these new insights is that the relationship between surface nutrient concentrations, biological export production, and atmospheric CO2 is more complex than previously predicted. Contrary to conventional wisdom, we show that OCS soft can increase and atmospheric CO2 decrease, while surface nutrients show minimal change and export production decreases.While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research

    Obliquity pacing of the late Pleistocene glacial terminations

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 434 (2005): 491-494, doi:10.1038/nature03401.The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is commonly attributed to control by Earth orbital configuration variations. This “pacemaker” hypothesis has inspired many models, variously depending upon Earth obliquity, orbital eccentricity, and precessional fluctuations, with the latter usually emphasized. A contrasting hypothesis is that glacial cycles arise primarily because of random internal climate variability. Progress requires distinguishing between the more than 30 proposed models of the late Pleistocene glacial variations. Here we present a formal test of the pacemaker hypothesis, focusing on the rapid deglaciation events known as terminations. The null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level. In contrast, for eccentricity and precession, the corresponding null-hypotheses cannot be rejected. The simplest inference, consistent with the observations, is that ice-sheets terminate every second (80 kyr) or third (120 kyr) obliquity cycle — at times of high obliquity — and similar to the original Milankovitch assumption. Hypotheses not accounting for the obliquity pacing are unlikely to be correct. Both stochastic and deterministic variants of a simple obliquity-paced model describe the observations.PH is supported by the NOAA Postdoctoral Program in Climate and Global Change and CW in part by the National Ocean Partnership Program (ECCO)

    Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study

    Get PDF
    There is evidence that ice age cycles are paced by astronomical forcing, suggesting some kind of synchronisation phenomenon. Here, we identify the type of such synchronisation and explore systematically its uniqueness and robustness using a simple paleoclimate model akin to the van der Pol relaxation oscillator and dynamical system theory. As the insolation is quite a complex quasiperiodic signal involving different frequencies, the traditional concepts used to define synchronisation to periodic forcing are no longer applicable. Instead, we explore a different concept of generalised synchronisation in terms of (coexisting) synchronised solutions for the forced system, their basins of attraction and instabilities. We propose a clustering technique to compute the number of synchronised solutions, each of which corresponds to a different paleoclimate history. In this way, we uncover multistable synchronisation (reminiscent of phase- or frequency-locking to individual periodic components of astronomical forcing) at low forcing strength, and monostable or unique synchronisation at stronger forcing. In the multistable regime, different initial conditions may lead to different paleoclimate histories. To study their robustness, we analyse Lyapunov exponents that quantify the rate of convergence towards each synchronised solution (local stability), and basins of attraction that indicate critical levels of external perturbations (global stability). We find that even though synchronised solutions are stable on a long term, there exist short episodes of desynchronisation where nearby climate trajectories diverge temporarily (for about 50 kyr). (...)Comment: 22 pages, 18 figure

    Multispectral analysis of Northern Hemisphere temperature records over the last five millennia

    Full text link
    Aiming to describe spatio-temporal climate variability on decadal-to-centennial time scales and longer, we analyzed a data set of 26 proxy records extending back 1,000–5,000 years; all records chosen were calibrated to yield temperatures. The seven irregularly sampled series in the data set were interpolated to a regular grid by optimized methods and then two advanced spectral methods—namely singular-spectrum analysis (SSA) and the continuous wavelet transform—were applied to individual series to separate significant oscillations from the high noise background. This univariate analysis identified several common periods across many of the 26 proxy records: a millennial trend, as well as oscillations of about 100 and 200 years, and a broad peak in the 40–70-year band. To study common NH oscillations, we then applied Multichannel SSA. Temperature variations on time scales longer than 600 years appear in our analysis as a dominant trend component, which shows climate features consistent with the Medieval Warm Period and the Little Ice Age. Statistically significant NH-wide peaks appear at 330, 250 and 110 years, as well as in a broad 50–80-year band. Strong variability centers in several bands are located around the North Atlantic basin and are in phase opposition between Greenland and Western Europe

    Auto-correlated directional swimming can enhance settlement success and connectivity in fish larvae

    No full text
    •The pelagic movement of coastal marine fish is largely modeled as a non-directional movement (i.e. Simple Random Walk–SRW) in biophysical dispersal models. Yet, recent studies show that coastal marine fish larvae swim in a directional manner in the pelagic environment–indicating a Correlated Random Walk (CRW) rather a Simple Random Walk (SRW).•When CRW is implemented in a biophysical dispersal model, settlement success and population connectivity substantially increase.•Future modeling efforts should apply CRW when modeling pelagic larval movement of fish larvae in biophysical dispersal models. Larvae of coastal-marine fishes have been shown repeatedly to swim directionally in the pelagic environment. Yet, biophysical models of larval dispersal typically impose a Simple Random Walk (SRW) algorithm to simulate non-directional movement in the open ocean. Here we investigate the use of a Correlated Random Walk (CRW) algorithm; imposing auto-correlated directional swimming onto simulated larvae within a high-resolution 3D biophysical model of the Gulf of Aqaba, the Red Sea. Our findings demonstrate that implementation of auto-correlated directional swimming can result in an increase of up to ×2.7 in the estimated success rate of larval-settlement, as well as an increase in the extent of connectivity. With accumulating empirical support for the capacity for directional-swimming during the pelagic phase, we propose that CRW should be applied in biophysical models of dispersal by coastal marine fish-larvae

    Image_1_Biophysical Simulations Support Schooling Behavior of Fish Larvae Throughout Ontogeny.TIFF

    No full text
    <p>Schooling is very common in adult and juvenile fish, but has been rarely studied during the larval stage. Recent otolith micro-chemistry studies of coral reef fish have demonstrated that cohorts of larvae can move through similar paths and settle within a few meters one from another. However, little is known about the processes involved in the formation and maintenance of these cohorts. Here we use a biophysical modeling approach to examine whether local hydrodynamics, various individual behaviors, or larval schooling can explain cohesive patterns observed for Neopomacentrus miryae in the Gulf of Aqaba/Eilat (Red Sea), and whether schooling is feasible in terms of initial encounter probability and cohesiveness maintenance. We then examine the consequences of schooling behavior on larval settlement success and connectivity. Our results indicate that: (1) Schooling behavior is necessary for generating cohesive dispersal patterns, (2) Initial larval encounter of newly-hatched larvae is plausible, depending mainly on initial larval densities and patchiness, and (3) schooling behavior increases the rate of larval settlement while decreasing the percentage of realized connections. Together with mounting evidence of cohesive dispersal, this numerical study demonstrates that larval schooling throughout the pelagic phase is realistic, and has a significant effect on settlement success and connectivity patterns. Future research is needed to understand the mechanisms of fission-fusion dynamics of larval cohorts and their effect on dispersal. Our findings should be considered in future efforts of larval dispersal models, specifically in the context of marine connectivity and the planning of marine protected area networks.</p

    Dynamics of a Snowball Earth ocean

    Get PDF
    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago)1, 2, inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered3, 4. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness5, 6, would have influenced the survival of photosynthetic life4, 5, 7, 8, 9, and may provide important constraints for the interpretation of geochemical and sedimentological observations4, 10. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation11, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario3 owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated6, 7. Although we cannot resolve the debate over the existence of global ice cover10, 12, 13, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations

    Image_2_Biophysical Simulations Support Schooling Behavior of Fish Larvae Throughout Ontogeny.pdf

    No full text
    <p>Schooling is very common in adult and juvenile fish, but has been rarely studied during the larval stage. Recent otolith micro-chemistry studies of coral reef fish have demonstrated that cohorts of larvae can move through similar paths and settle within a few meters one from another. However, little is known about the processes involved in the formation and maintenance of these cohorts. Here we use a biophysical modeling approach to examine whether local hydrodynamics, various individual behaviors, or larval schooling can explain cohesive patterns observed for Neopomacentrus miryae in the Gulf of Aqaba/Eilat (Red Sea), and whether schooling is feasible in terms of initial encounter probability and cohesiveness maintenance. We then examine the consequences of schooling behavior on larval settlement success and connectivity. Our results indicate that: (1) Schooling behavior is necessary for generating cohesive dispersal patterns, (2) Initial larval encounter of newly-hatched larvae is plausible, depending mainly on initial larval densities and patchiness, and (3) schooling behavior increases the rate of larval settlement while decreasing the percentage of realized connections. Together with mounting evidence of cohesive dispersal, this numerical study demonstrates that larval schooling throughout the pelagic phase is realistic, and has a significant effect on settlement success and connectivity patterns. Future research is needed to understand the mechanisms of fission-fusion dynamics of larval cohorts and their effect on dispersal. Our findings should be considered in future efforts of larval dispersal models, specifically in the context of marine connectivity and the planning of marine protected area networks.</p
    corecore