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The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is com-

monly attributed to control by Earth orbital configuration variations1. This “pacemaker”

hypothesis has inspired many models2–4, variously depending upon Earth obliquity, or-

bital eccentricity, and precessional fluctuations, with the latter usually emphasized. A

contrasting hypothesis is that glacial cycles arise primarily because of random internal cli-

mate variability5–7. Progress requires distinguishing between the more than 30 proposed

models of the late Pleistocene glacial variations8. Here we present a formal test of the pace-

maker hypothesis, focusing on the rapid deglaciation events known as terminations9,10.

The null hypothesis that glacial terminations are independent of obliquity can be rejected

at the 5% significance level. In contrast, for eccentricity and precession, the corresponding

null-hypotheses cannot be rejected. The simplest inference, consistent with the observa-

tions, is that ice-sheets terminate every second (80 kyr) or third (120 kyr) obliquity cycle—

at times of high obliquity—and similar to the original Milankovitch assumption11. Hy-

potheses not accounting for the obliquity pacing are unlikely to be correct. Both stochastic

and deterministic variants of a simple obliquity-paced model describe the observations.
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To test whether the glacial variability is related to changes in Earth’s astronomical con-

figuration, we adopt a formal null-hypothesis (H0) that glacial terminations are independent of

obliquity variations, and the alternate hypothesis (H1) that glacial terminations are paced by

them. Our focus on obliquity is motivated by previous indications of nonlinear interactions be-

tween obliquity period and quasi-100 kyr glacial variability12, but we also make identical tests

for pacing by precession and eccentricity. We focus the test on glacial terminations because

their magnitude and abruptness facilitate accurate identification.

Several obstacles must be overcome to distinguish between H0 and H1. A major problem

is the need to establish time controls on the glacial variability. Many studies estimate age

by assuming a relationship between climate proxy variability and orbital forcing13, 14, but this

approach assumes the validity of the hypothesis being tested. Instead, we use an age-model

devoid of orbital assumptions and apply it to the leading empirical orthogonal function (EOF1)

of ten well-resolved marine δ18O records12, a proxy for ice-volume (Fig 1a).

Most simple models of the late Pleistocene glacial cycles have at least four degrees of

freedom2, and some have as many as twelve3. Unsurprisingly then, the seven observed quasi-

100 kyr glacial cycles are insufficient to distinguish between the skill of the various models15.

Models with minimal degrees of freedom are necessary. Other requirements for a useful test

include the ability to cope with noisy records, age-model uncertainty, and (possibly) nonlinear

interactions. Here we test for stability in the phase of the orbital parameters during glacial

terminations using Rayleigh’s R (see Methods).

To proceed, we must estimate the probability distribution function associated with H0. Of
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the five estimation methods explored, we adopt the one which gives the highest critical value and

thus makes H0 the most difficult to reject — a modified random walk7 representing ice-volume

variability,

Vt+1 = Vt + ηt,

if Vt ≥ To, terminate. (1)

This highly simplified model posits 1 kyr steps in ice-volume, Vt, of random length, ηt, inde-

pendently drawn from a normal distribution with standard deviation σ = 2 and mean µ = 1.

The non-zero mean biasses the Earth toward glaciation. Once Vt reaches a threshold, To = 90, a

termination is triggered, and ice-volume is linearly reset to zero over 10 kyr. If the model were

deterministic with σ = 0 and µ = 1, glacial cycles would last exactly 100 kyr, but with σ = 2,

glacial cycle duration is approximately normally distributed at 100±20 kyr, a spread consistent

with observations10. Initial ice-volume is randomly set between 0 and To with equal probability.

Using a Monte Carlo technique (see Methods) we find a critical value of R = 0.60 (Fig 1a,b).

The observed obliquity phases produce R = 0.70, and H0 is rejected (Fig 1b). This

rejection of H0 is robust to all plausible reformulations of the test. Thus, the phase of obliquity

has a statistically significant relationship with the timing of deglaciation. The mean phase

direction is indistinguishable from zero and is associated with maxima in obliquity. We estimate

the H1 probability density function by assuming terminations always initiate at the same phase

of obliquity, but that termination timing is subject to identification and age-model uncertainties

(see Methods). The maximum likelihood value of H1 is R = 0.69, very near the observed value,

further supporting the conclusion that glacial terminations are paced by variations in obliquity.
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Analogous hypothesis tests for precession and eccentricity produce different results. Age-

model uncertainty approaches half a precession cycle, so that the power of the precession test

is negligible — even if present, precession pacing of the glacial cycles cannot be discerned. In

the case of eccentricity, H0 is not rejected using the random walk probability estimate (Eq 1),

but is rejected using weaker formulations of the eccentricity null-hypothesis. The discrepancy

arises because null-hypotheses which assume a glacial timescale of roughly 100 kyr (which we

consider to be more physical) tend to have higher R’s and are more difficult to reject. As the

hypotheses of negligible influence of precession and eccentricity on the glacial terminations

cannot be rejected, we adopt a minimalist strategy, retaining only obliquity to describe the

glacial terminations.

From a physical standpoint, support for the obliquity control hypothesis also comes from

the fact that maxima in obliquity cause annual average insolation anomalies of up to 10 W/m2

at high latitudes. Furthermore, the annual average and seasonal insolation redistributions asso-

ciated with obliquity are hemispherically symmetric — as is the glacial variability to within a

few thousand years16, 17. Obliquity control of the glacial terminations also alleviates the marine

isotope stage 11 problem2 of explaining why termination 5 is large when the eccentricity and

precession amplitude are small.

But how does a forcing with a 40 kyr period pace the 100 kyr late Pleistocene glacial

variability? It appears the climate state skips one or two obliquity “beats” prior to deglaciating,

giving quantized glacial cycle durations of either 80 or 120 kyr. One scenario is for increased

obliquity to increase high-latitude insolation and cause heating of an ice-sheet, eventually warm-

ing the ice-bedrock interface. When the ice-sheet is small, basal temperature and pressure are
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low, and the obliquity heating has little effect — a skipped beat. But when the ice-sheet is large,

basal temperature and pressure are high18, and the additional obliquity heating causes melting,

lubricates the ice-flow, and triggers a termination. Note that ∼10 kyr is required for surface

heating to penetrate to the base of an ice-sheet18. Unlike precession, changes in obliquity are

associated with sustained annual average changes in insolation19, 20 and, thus, are more likely to

cause basal warming of an ice-sheet. Furthermore, if climate was warmer during the early Pleis-

tocene, terminations would be triggered more nearly every obliquity cycle, giving the observed

smaller and more rapid glacial variability21.

A simple system, consistent with the foregoing observations, is obtained by making the

threshold in Eq 1 dependent on obliquity,

Vt+1 = Vt + ηt,

if Vt ≥ T◦ − aθ̄t, terminate. (2)

Here θ̄t is obliquity22, normalized to zero mean and unit variance, with amplitude a. The time

variable threshold makes it more likely for a termination to occur when obliquity is large. We

offer both deterministic and stochastic variants of Eq 2 to emphasize that such models are not

theories of climate change, but rather attempts at efficient kinematic descriptions of the data,

and that rather different mechanisms can be consistent with the limited observational records.

To make the model deterministic, the ice-volume step-size in Eq 2 is fixed at η = 1.

Setting a = 15, T◦ = 105, and (initial ice-volume) V(t=−700) = 30 provides a good descrip-

tion of the late Pleistocene glacial variability (Fig 2a). Many other parameterizations yield

similar results — we choose this one because it is particularly simple. The model produces the
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correct timing of the glacial terminations (using termination 3a, not 3b) and has a squared-cross-

correlation with δ18O EOF1 of 0.65, an excellent fit considering there are only three adjustable

parameters. (Adjustments made using η can equivalently be made using the other parameters.)

For comparison, tuning other models having four2 or twelve3 adjustable parameters yields maxi-

mum squared-cross-correlations with EOF1 of 0.24 and 0.74 respectively23. If skill is measured

by squared-cross-correlation divided by the number of adjustable parameters, Eq 2 does more

than three times as well.

A periodogram of the deterministic model results (Fig 2b) shows narrow-band concen-

trations of energy at the average 100 kyr period, the 41 kyr obliquity period, and at previously

identified12 combination tones, 1/41-1/100=1/70, 1/41+1/100=1/29, and 1/41+2/100=1/23 kyr

— in good agreement with the δ18O EOF1 periodogram. The appearance of 1/23 kyr narrow-

band energy in the absence of precession band forcing highlights the ambiguous origins of this

energy band20. Note the model also has energy at 2/100 kyr, not visible in the observations.

Also, while deterministic, the model produces an energetic background continuum consistent

with the δ18O periodogram.

For the stochastic case, ηt is defined to be normally distributed with σ = 2 and mean

µ = 1. Here ηt represents the unpredictable background weather and climate variability span-

ning all time scales out to the glacial/interglacial. All other parameter settings are kept the same

as in the deterministic case. Now, Eq 2 resembles an order one autoregressive process. Such

a process is known to well-describe the glacial variability, excepting “runs” associated with

glacial terminations24, here modeled using the threshold condition in Eq 2. The time between

terminations in the stochastic model averages 100 kyr but has a tri-modal distribution with max-
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ima at two (80 kyr), three (120 kyr), and four (160 kyr) obliquity cycles (Fig 2d). The observed

durations between terminations are consistent with the dominant 80 and 120 kyr modes, but

suggest that one would see 160 kyr glacial cycles, given a larger sample size. The R obtained

by the stochastic model averages 0.85 (Fig 2e), higher than the observed R = 0.70, and as

expected because of observational age-model error.

Deterministic and stochastic variants of Eq 2 thus both describe the late Pleistocene glacial

variability. A description of the early Pleistocene variability21 is obtained by lowering the termi-

nation threshold to T◦ = 40, giving smaller amplitude terminations that occur more nearly every

obliquity cycle. Alternatively, instead of specifying a parameter change, the mid-Pleistocene

transition can be described using a chaotic model23 (not shown) having spontaneous transitions

between 40 and 100 kyr modes of glacial variability. At this point, it is unclear whether ad-

equate data will ever be available to distinguish between stochastic, simple deterministic, and

chaotic deterministic models of the glacial variability.

The simplest interpretation of our results is that, during the Pleistocene, Earth tends to

a glacial state (anthropogenic influences aside) but deglaciates at obliquity maxima. Obliquity

control of the timing of deglaciation, probably in concert with a stochastic forcing, has several

other consequences. These include inferences drawn from precession and eccentricity based

models of glaciation25, the hemispheric symmetry of glacial cycles, and the efficacy of age-

model tuning of cores. These issues will be taken up elsewhere.
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Methods

Rayleigh’s R is defined as26

R =
1

N

∣∣∣∣∣

N∑

n=1

cos φn + i sin φn

∣∣∣∣∣ . (3)

Here, φn is the phase of obliquity stroboscopically sampled at the nth glacial termination. The

|.| indicate the magnitude, making R real and non-negative, with a maximum value of one when

the phases are all equal. Relative to other measures of phase coupling used to investigate cardiac

synchronization27 and a wide range of other nonlinear interactions28, Rayleigh’s R requires

many fewer phases (roughly five) to test for phase stability26.

To measure R between obliquity and the glacial cycles, we use δ18O EOF1 and an age-

model independent of orbital assumptions12 (Fig 1a). Such an independent age-model is impor-

tant because even so-called minimal tuning strategies — using only a narrow-band of a climate

record — tend to align the abrupt glacial terminations with a particular phase of the assumed

forcing (as indicated by Monte Carlo simulations), thus biasing records towards H1.

The rate of change of EOF1 has a unimodal distribution with a long tail, indicative of rapid

melting. Terminations are defined to initiate when the rate of change in EOF1 first exceeds the

two-standard deviation level. This criterion identifies each of the usual terminations9, 10, but

two events in the termination 3 deglacial sequence, termed 3a and 3b for the younger and older

events respectively. Additional rules could be added to exclude 3a or 3b, but this rejection seems

ad hoc, and we use all eight termination events. Note, the timing of termination 3 predicted by

the Paillard model3 also coincides with either event 3a or 3b, depending on slight changes in the

parameterizations. Reassuringly, results are not sensitive to details of the test: either termination
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3a or 3b can be excluded; termination times can be defined using the midpoint between the local

minimum and maximum bracketing each termination; and individual benthic or planktic δ18O

records14 can be used in place of EOF1.

The probability density function (PDF) associated with H0 is estimated using the modified

random walk model (Eq 1). A realization of R is obtained by sampling the phase of obliquity at

eight consecutive termination initiations, generated from Eq 1, and the PDF of H0 is estimated

by binning 104 such realization of R. Other methods are to assume a uniform phase distribution,

use surrogate data techniques29, or to derive statistics from ensemble runs of other models, but

all these give PDF estimates which make H0 more easily rejected and are therefore not used.

To estimate the PDF associated with H1, we assume that glacial terminations always occur

at the same phase of obliquity, but that the phase observations are subject to identification and

age-model error. A Monte Carlo technique is used where the timing of the glacial terminations

are perturbed according to the estimated age uncertainties12 (these average ±9 kyr) and identifi-

cation error (±1 kyr, the EOF1 sampling resolution). A realization of R is then computed using

the phase of obliquity at the perturbed ages, and 104 such realizations are binned to estimate the

PDF of H1. We estimate the likelihood of correctly rejecting H◦ (i.e. the power of the obliquity

test) to be 0.57. See the supplementary web information for a listing of the pertinent data and

statistics.
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Figure 1 The Rayleigh test for phase directionality. a, δ18O EOF1 normalized so that nega-

tive values indicate more ice. Dots indicate onset of a termination and horizontal bars indicate

one-standard-deviation age-model uncertainties12. Termination 3 is split between events 3a

and 3b. Vertical lines indicate the time of maxima in obliquity. b, The obliquity phase (dots)

sampled at each termination and plotted on a unit circle. The vector average has a magnitude,

R = 0.70 (cross mark), exceeding the critical value, c = 0.60 (filled circle), so that H0 is re-

jected. Furthermore, R is near H1’s maximum likelihood value (dashed circle). The direction

is indistinguishable from maximum obliquity (top of the circle). Analogous tests are made for c

precession (R = 0.43, c = 0.60) and d eccentricity (R = 0.66, c = 0.84), but in neither case can

the corresponding H0 be rejected. See the supplementary web information for more details.

Figure 2 Deterministic and stochastic descriptions of the late Pleistocene glacial variability.

a Deterministic model results (red) with an obliquity dependent threshold (black) plotted over

EOF1 (brown). b Periodograms of the deterministic model results (red) and EOF1 (brown).

Concentrations of energy are centered on the 1/41 kyr obliquity frequency and the 1/100 kyr

glacial band; as well as combination tones at 1/70, 1/29, and 1/23 kyr. The approximate 95%

confidence interval is indicated by the vertical bar at right. c A realization of the stochastic

model. d Histogram of time between terminations, derived from many runs of the stochastic

model. The observed duration between terminations (triangles, using termination 3a not 3b)

coincide with the dominant 80 and 120 kyr modes. e Histogram of Rayleigh’s R from the

stochastic model with the observed obliquity value, R=0.70, indicated by the triangle.
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