20,082 research outputs found

    Time-resolved photometry of the nova remnants DM Gem, CP Lac, GI Mon, V400 Per, CT Ser and XX Tau

    Get PDF
    We present the first results of a photometric survey of poorly studied nova remnants in the Northern Hemisphere. The main results are as follows: DM Gem shows a modulation at 0.123 d (probably linked to the orbit) and rapid variations at ∼22 min. A moderate resolution spectrum taken at the time of the photometric observations shows intense He II λ4686 and Bowen emission, characteristic of an intermediate polar or a SW Sex star. Variability at 0.127 d and intense flickering (or quasi-periodic oscillations) are the main features of the light curve of CP Lac. A 0.1-mag dip lasting for ∼45 min is observed in GI Mon, which could be an eclipse. A clear modulation (probably related to the orbital motion) either at 0.179 d or 0.152 d is observed in the B-band light curve of V400 Per. The results for CT Ser point to an orbital period close to 0.16 d. Intense flickering is also characteristic of this old nova. Finally, XX Tau shows a possible periodic signal near 0.14 d and displays fast variability at ∼24 min. Its brightness seems to be modulated at ∼5 d. We relate this long periodicity to the motion of an eccentric/tilted accretion disc in the binary

    Study of the Low Energy Dynamics in the ppK+K- System with the Cosy-11 Magnetic Spectrometer

    Get PDF
    The near threshold production of K+K- pairs in proton-proton collisions has been investigated at the cooler synchrotron COSY below and above the threshold for the \phi meson production. The experimental excitation function determined for the pp-->ppK+K- reaction differs from theoretical expectations including proton-proton final state interaction. The discrepancy may be assigned to the influence of K+K- or pK interaction. In this article we present distributions of the cross section for the pp-->ppK+K- reaction as a function of the invariant masses of two and three particle subsystems at excess energies of Q=10 MeV and 28 MeV.Comment: Presented at the Symposium on Meson Physics, Cracow, 01-04 October 200

    Carbon burning in intermediate mass primordial stars

    Full text link
    The evolution of a zero metallicity 9 M_s star is computed, analyzed and compared with that of a solar metallicity star of identical ZAMS mass. Our computations range from the main sequence until the formation of a massive oxygen-neon white dwarf. Special attention has been payed to carbon burning in conditions of partial degeneracy as well as to the subsequent thermally pulsing Super-AGB phase. The latter develops in a fashion very similar to that of a solar metallicity 9 M_s star, as a consequence of the significant enrichment in metals of the stellar envelope that ensues due to the so-called third dredge-up episode. The abundances in mass of the main isotopes in the final ONe core resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28 and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4} M_sComment: 11 pages, 11 figures, accepted for publication in A&

    Frequency dependence of pulsar radiation patterns

    Get PDF
    We report on new results from simultaneous, dual frequency, single pulse observation of PSR B0329+54 using the Giant Metrewave Radio Telescope. We find that the longitude separation of subpulses at two different frequencies (238 and 612 MHz) is less than that for the corresponding components in the average profile. A similar behaviour has been noticed before in a number of pulsars. We argue that subpulses are emitted within narrow flux tubes of the dipolar field lines and that the mean pulsar beam has a conal structure. In such a model the longitudes of profile components are determined by the intersection of the line of sight trajectory with subpulse-associated emission beams. Thus, we show that the difference in the frequency dependence of subpulse and profile component longitudes is a natural property of the conal model of pulsar emission beam. We support our conclusions by numerical modelling of pulsar emission, using the known parameters for this pulsar, which produce results that agree very well with our dual frequency observations.Comment: 24 pages, 8 figures. Accepted for publication in Ap

    Tourism in Azores Islands: Persistence in the Monthly Arrivals

    Get PDF
    This study analyses the persistence in the international monthly arrivals to the Azores Islands using a model based on fractional integration and seasonal autoregressions. The estimated fractional differencing parameter gives an indication of the long run evolution of the series. We use both aggregate data and disaggregate monthly data by location of origin and island destination. The results show that the aggregate series corresponding to the total number of arrivals is a nonstationary I(d) process with d above 1, and the most persistent ones are those travelling to Säo Miguel, especially from Holland, Finland, Norway, Germany, Denmark and the UK.Monthly arrivals; Seasonal fractional integration; Persistence; Azores Islands.

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    How to generate pentagonal symmetry using Turing systems

    Get PDF
    We explore numerically the formation of Turing patterns in a confined circular domain with small aspect ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids. Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids

    Spontaneous patterning of quantum dots at the air-water interface

    Get PDF
    Nanoparticles deposited at the air-water interface are observed to form circular domains at low density and stripes at higher density. We interpret these patterns as equilibrium phenomena produced by a competition between an attraction and a longer-ranged repulsion. Computer simulations of a generic pair potential with attractive and repulsive parts of this kind, reproduce both the circular and stripe patterns. Such patterns have a potential use in nanoelectronic applications
    corecore