The evolution of a zero metallicity 9 M_s star is computed, analyzed and
compared with that of a solar metallicity star of identical ZAMS mass. Our
computations range from the main sequence until the formation of a massive
oxygen-neon white dwarf. Special attention has been payed to carbon burning in
conditions of partial degeneracy as well as to the subsequent thermally pulsing
Super-AGB phase. The latter develops in a fashion very similar to that of a
solar metallicity 9 M_s star, as a consequence of the significant enrichment in
metals of the stellar envelope that ensues due to the so-called third dredge-up
episode. The abundances in mass of the main isotopes in the final ONe core
resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28
and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly
composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4}
M_sComment: 11 pages, 11 figures, accepted for publication in A&