185 research outputs found

    The bittersweet effects of COVID-19 on mental health:Results of an online survey among a sample of the Dutch population five weeks after relaxation of lockdown restriction

    Get PDF
    Previous research shows that crises can have both negative and positive mental health effects on the population. The current study explored these effects in the context of the COVID-19 pandemic after relaxation of governmental measures. An online survey was administered among a representative sample of the Dutch population (n = 1519) in June 2020, ten weeks after the peak of COVID-19 had passed, and five weeks after restrictions were relaxed. Participants were asked about mental health, adverse events during COVID-19, and about any positive effects of the pandemic. Most participants (80%, n = 1207) reported no change in mental health since the COVID-19 pandemic. This was also the case among respondents who had experienced an adverse event. Protective factors of mental health were being male and high levels of positive mental well-being. Risk factors were emotional loneliness and the experience of adverse life events. Social loneliness was positively associated with stable mental health, stressing the importance of meaningful relationships. Note that 58% of participants reported positive effects of the pandemic, the most common of which were rest, working from home, and feeling more socially connected. In summary, 10 weeks after the start of the crisis, and 5 weeks after relaxation of the restrictions, most people remained stable during the crisis, and were even able to report positive effects

    Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean

    Get PDF
    The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and co-bombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allele-specific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5

    Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete)

    Get PDF
    Analysis of an organism’s genetic diversity requires a method that gives reliable, reproducible results. Microsatellites are robust markers, however, detection of allele sizes can be difficult with some systems as well as consistency among laboratories. In this study, our two laboratories used 219 isolates of Phytophthora sojae to compare three microsatellite methods. Two capillary electrophoresis methods, the Applied Biosystems 3730 Genetic Analyzer and the CEQ 8000 Genetic Analysis system, detected an average of 2.4-fold more alleles compared to gel electrophoresis with a mean of 8.8 and 3.6 alleles per locus using capillary and gel methods, respectively. The two capillary methods were comparable, although allele sizes differed consistently by an average of 3.2 bp across isolates. Differences between capillary methods could be overcome if reference standard DNA genotypes are shared between collaborating laboratories

    Decolonizing Science and Science Education in a Postcolonial Space (Trinidad, a Developing Caribbean Nation, Illustrates)

    Get PDF
    The article addresses how remnant or transformed colonialist structures continue to shape science and science education, and how that impact might be mitigated within a postcolonial environment in favor of the development of the particular community being addressed. Though cognizant of, and resistant to, the ongoing colonial impact globally and nationally (and any attempts at subjugation, imperialism, and marginalization), this article is not about anticolonial science. Indeed, it is realized that the postcolonial state of science and science education is not simply defined, and may exist as a mix of the scientific practices of the colonizer and the colonized. The discussion occurs through a generic postcolonial lens and is organized into two main sections. First, the discussion of the postcolonial lens is eased through a consideration of globalization which is held here as the new colonialism. The article then uses this lens to interrogate conceptions of science and science education, and to suggest that the mainstream, standard account of what science is seems to represent a globalized- or arguably a Western, modern, secular-conception of science. This standard account of science can act as a gatekeeper to the indigenous ways of being, knowing, and doing of postcolonial populations. The article goes on to suggest that as a postcolonial response, decolonizing science and science education might be possible through practices that are primarily contextually respectful and responsive. That is, localization is suggested as one possible antidote to the deleterious effects of globalization. Trinidad, a postcolonial developing Caribbean nation, is used as illustration

    Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories

    Get PDF
    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology

    ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks

    Get PDF
    [Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de Educación, Cultura y Deportes; AGL2011-30563-C03-0

    Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3)

    Get PDF
    Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve due to the nonlinearity introduced by the rheology. Therefore, approximations to the FS equations are commonly used, especially when modeling a marine ice sheet (ice sheet, ice shelf, and/or ice stream) for 103 years or longer. The shallow ice approximation (SIA) and shallow shelf approximation (SSA) are commonly used but are accurate only for certain parts of an ice sheet. Here, we report a novel way of iteratively coupling FS and SSA that has been implemented in Elmer/Ice and applied to conceptual marine ice sheets. The FS–SSA coupling appears to be very accurate; the relative error in velocity compared to FS is below 0.5&thinsp;% for diagnostic runs and below 5&thinsp;% for prognostic runs. Results for grounding line dynamics obtained with the FS–SSA coupling are similar to those obtained from an FS model in an experiment with a periodical temperature forcing over 3000 years that induces grounding line advance and retreat. The rapid convergence of the FS–SSA coupling shows a large potential for reducing computation time, such that modeling a marine ice sheet for thousands of years should become feasible in the near future. Despite inefficient matrix assembly in the current implementation, computation time is reduced by 32&thinsp;%, when the coupling is applied to a 3-D ice shelf.</p
    corecore