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Utilization and control of ecological interactions in polymicrobial
 infections and community-based microbial cell factories [version

1; referees: 3 approved]
Vinoth Wigneswaran ,    Cristina Isabel Amador , Lotte Jelsbak , Claus Sternberg ,
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Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
Department of Science and Environment, Roskilde University, Roskilde, Denmark

Abstract
Microbial activities are most often shaped by interactions between co-existing
microbes within mixed-species communities. Dissection of the molecular
mechanisms of species interactions within communities is a central issue in
microbial ecology, and our ability to engineer and control microbial
communities depends, to a large extent, on our knowledge of these
interactions. This review highlights the recent advances regarding molecular
characterization of microbe-microbe interactions that modulate community
structure, activity, and stability, and aims to illustrate how these findings have
helped us reach an engineering-level understanding of microbial communities
in relation to both human health and industrial biotechnology.
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Introduction
Most microbial species are embedded within ecological commu-
nities containing many species that interact with one another and 
their physical environment. Virtually all important microbial activi-
ties are shaped by interactions between co-existing microbes within 
mixed-species communities. These interactions (e.g. in the form of 
physical, chemical, and genetic signals such as cell-cell contact1, 
metabolite exchange2, and horizontal gene transfer3) control syner-
gistic, antagonistic, or neutral relationships among the interacting 
partners and are thus responsible for overall community properties 
such as species composition and function. In addition, microbial 
interactions may be dynamic and dependent on environmental 
context, and microbial communities can have different spatial inter-
active distributions ranging from metabolic interactions between 
unassociated planktonic cells in the ocean4 and long-distance 
electrical signaling within microbial communities5,6 to local cell-
cell interactions occurring within surface-attached biofilms7. 
Furthermore, a series of recent studies have shown that microbe-
microbe and microbe-host interactions can also be mediated by 
small, air-transmittable molecules8–10.

Given this complexity among microbial interactive processes, it 
remains a central challenge to improve our understanding of the 
molecular mechanisms underlying these interaction processes, their 
combinatorial effects, and how these interactions ultimately modu-
late the diversity, behaviors, and activities of the individual species 
within complex microbial communities.

Dissection of the molecular mechanisms of species interactions 
within communities is an important issue in microbial ecology. 
Recently, studies of a diverse range of microbial ecosystems have 
provided new insight into this area by combining omics methods 
with classical microbiology cultivation techniques. These systems 
include multispecies microbial communities formed during the pro-
duction of fermented food11,12, microbial communities in acid mine 
drainages and other polluted habitats13, the commensal microbiota 
of corals14, as well as several other ecosystems. In this review, we 
focus primarily on studies of microbe-microbe interactions in host-
associated microbial communities and with respect to the engineer-
ing of mixed-species microbial cell factories. We use these two 
examples to broadly illustrate and discuss how knowledge of spe-
cies interactions is of importance in relation to our ability to control 
and utilize microbial systems.

Advances in studies of pathogen-microbiota 
interactions
In relation to infectious diseases, it is becoming increasingly clear 
that interactions between bacterial pathogens and other microbial 
species present at the infection site (for example, co-infecting path-
ogens or commensal bacteria) can influence disease phenotype or 
clinical outcome. One example of the importance of such pathogen-
microbiota interactions is the well-established role of the intestinal 
commensal microbiota regarding the prevention of colonization of 
invading microorganisms including bacterial pathogens in a proc-
ess known as colonization resistance15. The ability to characterize 

microbial community structures using 16S ribosomal RNA  
(rRNA)-based phylogenies or full metagenomic sequencing has 
now resulted in a much deeper understanding of the interplay 
between the human microbiome and bacterial pathogens with 
respect to infectious disease development. For example, studies 
of the microbial communities in certain chronic infections such as 
cystic fibrosis (CF) have revealed clear correlations between loss 
of community diversity and disease progression16–18. CF patients 
are predisposed to airway infections from a number of bacterial 
opportunistic pathogens, among which Pseudomonas aeruginosa, 
Staphylococcus aureus, Haemophilus influenzae, and Burkhol-
deria cepacia complex (BCC) have been directly associated with 
CF lung disease19–21. However, recent studies based on culture- 
independent methods have demonstrated the presence of many 
additional bacterial species previously undetected by culture and 
have revealed a greater microbial diversity in CF airways than pre-
viously recognized20. CF airways clearly represent a complex and 
diverse polymicrobial ecosystem, and, as the disease symptoms 
become more severe, the CF lung microbiota becomes dominated 
by the primary pathogen (which most often is the opportunistic 
pathogen P. aeruginosa)16–18. These results are suggestive of a wider 
role of the respiratory microbiota and highlight the importance of 
interactions between the primary pathogen and the microbiota in 
relation to disease progression.

There are several recent and parallel examples of interactions 
between the commensal microbiota and possible pathogens which 
are responsible for limiting colonization and infections by bacte-
rial pathogens such as Staphylococcus aureus in the nasal cavity22 
and enteropathogenic Escherichia coli23 and Vibrio cholera24 in the 
gut. Despite these exciting observations, we are still far from being 
able to efficiently harness the protective capability of the commen-
sal microbiota against pathogens. Nevertheless, these and related 
findings clearly point toward chemical and/or biological interfer-
ence with microbial interaction networks within diseased hosts as 
alternative treatment strategies against pathogens.

The findings mentioned above highlight the importance of research 
aimed at systematic mapping of interspecies interactions regard-
ing different types of bacterial infections in combination with the 
identification and molecular characterization of these interactions. 
In other words, it is now critical to move beyond correlative research 
and studies focused on generating microbiome “parts” lists and to 
instead begin to focus on causality and function at the molecular 
level. Indeed, a few pioneering studies have recently illustrated these 
points very clearly, and there are now clear examples of identified 
microbe-microbe interactions mediated by bacterial metabolites and 
gene products that function either to limit pathogen colonization22–25 
or to potentiate pathogen expansion or virulence26–28. Although it is 
obviously challenging to identify and characterize microbial inter-
species interactions in infected hosts, interdisciplinary approaches 
that combine classical microbiological in vitro cultivation tech-
niques with advancing technologies such as three-dimensional (3D) 
printing29, imaging mass spectrometry28,30, and development of real-
istic and controllable in vitro model systems31 now make it possible 
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to begin systematically teasing apart the interactions among culti-
vated key community members and to determine how these interac-
tions modify pathogen behaviors.

Engineering synthetic multispecies communities for 
bioproduction purposes
In nature, microbes form interacting mixed-species communities to 
accomplish complex chemical conversions through division of labor 
among the individual organisms. We have successfully harnessed the 
power of such natural microbial communities in food and other indus-
tries for decades32,33, and this has logically led to the emerging concept 
of community-based cell factories in which synthetic microbial com-
munities are rationally designed and engineered to produce valuable 
chemicals. Recent studies have indeed demonstrated the potential 
value of such engineered mixed-species communities as production 
platforms. In one recent example, a synthetic mixed-species com-
munity of E. coli and Saccharomyces cerevisiae was engineered to 
produce complex pharmaceutical molecules including precursors of 
the anti-cancer drug paclitaxel34. By engineering the two organisms 
to host specific portions of the biosynthetic pathways, it was possible 
to construct a co-culture system in which an intermediate metabo-
lite was first produced by E. coli and then further functionalized by  
S. cerevisiae to give the final product. This study is the first demon-
stration of the segregation of long and complex biosynthetic path-
ways into separate organisms each carrying portions of the pathway, 
which not only enables parallel optimization of the independent 
pathway modules but also makes it possible to use the best match 
between particular pathway modules and specific hosts. In another 
recent study, a fungal-bacterial community was engineered to con-
vert lignocellulosic biomass into biofuels35. Here, the community 
contained the fungus Trichoderma reesei, which can hydrolyze 
lignocellulosic biomass into soluble saccharides, and the bacterium 
E. coli, which can metabolize these saccharides into isopropanol. In 
this example, one species provided the carbon source for the sec-
ond species, which in turn was able to produce the final product on 
its own.

It is clear from these and other studies that successful engineering 
of community-based microbial cell factories relies greatly on our 
molecular understanding of microbe-microbe interactions and how 
these influence community assembly, stability, and activity.

Controlling the stability of community-based cell 
factories
Unlike their natural counterparts, synthetic communities are often 
unstable. For example, different growth rates among the constitu-
ent organisms and secretion of toxic metabolites during growth 
can influence the stability of the community and will often lead to 
single-species domination or extinction of the community36. This 
general instability of synthetic communities limits their translation 
into real-world applications in industrial biotechnology, and achiev-
ing long-term maintenance of synthetic communities is a significant 
challenge that must be solved.

Although we still have an incomplete understanding of the multi-
ple competitive and cooperative interactions that control microbial 
community assembly and activity, many different strategies have 
been successfully employed to increase the stability of synthetic 

communities. In the first example described above, Zhou et al.34 
used knowledge of the metabolic capacities of the constituent organ-
isms to construct a specific environment that favored community 
stability: E. coli can use xylose as a carbon source, but when grown 
on this carbon source, E. coli excretes acetate, which is inhibitory to 
its own growth. On the other hand, S. cerevisiae can use acetate as 
a carbon source but not xylose. The use of a specific carbon source 
(in this case xylose) thus created a mutualistic interaction between 
the two organisms, which in turn stabilized the community.

In the other mixed-species community (containing T. reesei and  
E. coli) described in the previous section, Minty et al.35 took advan-
tage of the particular co-operator/cheater relationship that existed 
in their engineered fungal-bacterial community and used ecological 
theory to establish specific conditions (in terms of population sizes) 
that could stabilize this interaction.

However, community-stabilizing culture conditions—similar to the 
ones described in these two examples—may be difficult to design 
and construct for other synthetic communities. Most likely, it is rea-
sonable to expect that alternative approaches will be required in 
most other situations. These alternative methods may include the 
construction of synthetic interactions by genetic engineering of 
the participating species to enforce their interaction. For example, 
genetic construction of pairs of auxotrophs that cross-feed and sup-
port the growth of one another when co-cultured has been shown to 
be an effective approach for improving community maintenance37,38. 
Other strategies have relied on programming specific mutualistic 
interactions by means of synthetic intercellular signaling circuits39–41. 
However, such synthetic interactions are of course also targets of 
evolutionary process and the long-term stability of these genetic 
modifications is currently not well understood.

Form and function in microbial communities
A fundamental principle in biology is that structure (form) and func-
tion are inseparable elements. For example, spatial separation of 
cells that are then subsequently linked together through controlled 
proximity is an organizational theme frequently observed at all 
levels in biology42. In relation to natural microbial communities, 
it is well established that spatial organization of the component 
species has significant impact on the function and activity of the  
systems43–45. Interestingly, such structure/function considerations 
are often not included in the design of synthetic microbial com-
munities or considered in relation to human infections where the 
spatial and dynamic distribution of bacteria (including pathogens) 
and their activities within the human host have been found to be 
more complex than previously realized46–48.

Regarding the construction of community-based cell factories, it is 
certainly a possibility that alternative community-stabilizing meth-
ods should build on knowledge of structure/function relationships. 
Indeed, it has been shown that spatial separation and artificial posi-
tioning of cells within synthetic microbial communities improve 
community function and stability36. Recent advances in fluidics-
based bacterial cultivation chambers49, 3D printing methods29, and 
other micro-patterning techniques50 represent exciting areas in this 
direction that may advance our ability to efficiently design and con-
trol the spatial organization of cells within microbial communities.
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Summary
As either members of infection communities within colonized hosts 
or part of synthetic communities for sustainable bioproduction, 
both pathogenic and industrially relevant bacteria are placed in 
polymicrobial environments in which interactions and spatial posi-
tion modulate their activity. In both areas, there is a clear need to 
move beyond the current sequenced-based technologies often used 
to characterize complex microbial communities and to begin to 
identify and characterize the function of microbial interactions and 
the role of spatial organization. The examples shown here illustrate 
that such knowledge can provide new strategies for better control 
of bacterial infection and optimized utilization of community-
based microbial cell factories. Finally, we emphasize that although 
our discussion is focused on examples of multispecies bacterial 
systems in relation to disease and biosynthesis, we believe these 
are indeed representative examples of an awakening field within 

microbial ecology focused on understanding species interactions 
in many types of polymicrobial ecosystems.
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