38 research outputs found

    Using crop-pathogen modeling to identify plant traits to control Zymoseptoria tritici epidemics on wheat

    Get PDF
    Diversification in pathogen control methods to reduce the severity of economically important foliar diseases such as Zymoseptoria tritici on wheat is needed. One way is to identify plant physiological and architectural traits that influence disease development and that can be selected in the process of crop breeding. Such traits may be used for improving tolerance or disease escape. Traits favoring disease escape, the focus of our work, may significantly decrease crop epidemics (Robert et al., 2018). However, understanding the role of such traits in crop-pathogen interactions is a daunting task because the interactions are multiple and dynamic in time. To characterize and quantify crop-pathogen interactions, an innovative trait-based and resource-based modeling framework was developed (Precigout et al., 2017). In this framework, the pathosystem is assumed to respond dynamically to both architecture and physiological status of the host canopy. A canopy consists of plenty of small patches, i.e. small functional and infectable units of leaf tissue. Production of new patches, for canopy growth and renewal of photosynthetically active plant tissues, is a function of the available resources produced by the other patches. Pathogen spores can contaminate nearby healthy patches. The definition of patch proximity depends on dispersal abilities of the pathogen and canopy architecture. We used and adapted this modeling framework to quantify the effects of several plant traits on Zymoseptoria tritici epidemics for varied climate scenarios. The complex infection cycle of Z. tritici characterized by a long symptomless incubation period was implemented in the model. We studied plant architectural traits such as leaf size or stem height, and plant physiological traits such as leaf lifespan or leaf metabolite contents. In our simulations, these traits impacted the epidemics dynamics though their effects on pathogen dispersal and on the amount of resources available for the pathogen. Sensitivity analyses showed how disease severity depended on plant traits and pathogen virulence. The importance of several plant and pathogen traits could be linked to the pathogen’s ability to manage the race for the colonization of the canopy in the face of canopy growth. Playing on host traits also made it possible to simulate different wheat varieties - with contrasted heights, pathogen resistance or precocity - to characterize the behavior of the pathosystem of interest for different host ideotypes. We argue that this kind of trait-based modeling approach is a valuable tool to identify plant traits promoting more resilient agroecosystems in particular for crop breeding in a context of innovative and sustainable crop protection

    Potentialities of cultivar mixtures to prevent epidemic progression of septoria tritici blotch : Input of spore rain-splash dispersal mechanisms within a heterogeneous canopy

    No full text
    Accroître la diversité végétale au sein d'une culture par l'utilisation d'associations variétales est une stratégie qui permet de limiter la sévérité des maladies à dispersion éolienne. Les potentialités de cette pratique culturale restent à être caractérisées de manière précise dans le cas des maladies à dispersion pluviale, telle que la septoriose du blé durant sa phase épidémique. Cette maladie foliaire, due au champignon pathogène Mycosphaerella graminicola, est prédominante sur blé et est capable de causer des pertes substantielles de rendement, allant jusqu'à -40 %. Des expérimentations au champ ont été menées durant cinq années, de 2008 à 2012, sur le site INRA de Grignon (Yvelines, France), avec une association constituée de deux variétés de blé ayant des niveaux contrastés de résistance à M. graminicola, et dont les proportions étaient de une plante sensible pour trois assez résistantes. Par rapport à leur culture monovariétale respective, nous avons observé une diminution de la sévérité de la septoriose sur la plus sensible des variétés (en moyenne, 45 % de surface pycnidiale foliaire en moins sur les trois dernières feuilles), sans affecter significativement la variété plus résistante. Une méthodologie originale semi-automatisée a été développée pour quantifier le flux de spores dispersés par la pluie en conditions naturelles. Les mesures expérimentales ont permis de corréler l'intensité de plusieurs épisodes pluvieux avec la dispersion de spores au sein de différents couverts incluant des associations variétales. Un modèle mécaniste et stochastique a été développé afin de décrire la progression du potentiel de maladie au sein d'un couvert végétal hétérogène en trois dimensions. Cette approche théorique combine physique et épidémiologie, d'une part, (i) pour calculer l'interception des gouttes de pluie avec les organes végétaux et la trajectoire des gouttelettes d'éclaboussement au sein du couvert et, d'autre part, (ii) pour prendre en compte les niveaux de résistance variétale et la nature polycyclique de l'épidémie. À partir de ce modèle, il a été mis en évidence pour des associations de deux variétés que les proportions, ainsi que le différentiel de résistance entre les variétés à associer, pouvaient être optimisées pour réduire la sévérité de la maladie. Par ailleurs, ce modèle permet d'évaluer et d'identifier les distributions spatiales des variétés les plus propices à une réduction de la progression d'une maladie à dispersion pluviale. Parmi les précédents travaux traitant des potentialités des associations de variétés pour lutter contre des pathogènes dispersés par l'action mécanique de la pluie, certains avançaient des conclusions souvent contradictoires et peu en faveur de cette pratique. Nous avons montré ici qu'il est possible sous certaines conditions d'association de variétés (proportions, agencement spatial, différentiel de résistance globale) et de pluviométrie d'obtenir un effet significatif en termes de réduction de la maladie.Increasing plant diversity within a crop by the use of cultivar mixtures is a strategy which allows to reduce severity of windborne diseases. Potentialities of this cropping practice have still to be precisely characterized in the case of rain-borne diseases, such as septoria tritici blotch during its spring epidemiological stage. This disease, due to the pathogen fungus Mycosphaerella graminicola, is prevalent on wheat crops and it may be result in substantial yield losses, up to -40%. Field experiments were carried out during five years, from 2008 to 2012, at the Grignon location (Yvelines, France), with a mixture consisting of two wheat cultivars with contrasted resistance to M. graminicola in a 1/3 susceptible/resistant ratio. In comparison with their pure stands, we observed a severity decrease of septoria tritici blotch for the most susceptible cultivar (on average, less 45% of leaf pycnidial leaf surface on the three upper leaf levels), without significantly affect the more resistant cultivar. An original semi-automated methodology was developed to quantify the splash-dispersed spore flux in outdoor conditions. Experimental measurements allowed to correlate intensity of several rainfall events with spore dispersal within different canopies including a cultivar mixture. A mechanistic and stochastic model was implemented in order to describe disease potential progression within a heterogeneous three-dimensional plant canopy. This theoretical approach combines physics and epidemiology in order to, on one hand, (i) compute interception of raindrops with plant organs and the pathway of splash droplets within the canopy and, on the other hand, (ii) take into account cultivar resistance levels and the polycyclism of epidemics. From this model, we highlighted for two-component cultivar mixtures that the proportions and the difference between resistance levels of cultivars to mix together could be optimized in order to reduce disease severity. Furthermore, this modelling approach makes it possible to assess and identify the cultivar spatial distributions the most favourable to a decrease of progression of a splash-dispered disease. Previous studies about potentialities of cultivar mixtures to control splash-dispersed pathogen agents, led in some cases to conclusions with inconsistent and not in favour of this cropping practice. We showed here that it was possible under certain cultivar designing conditions (proportions, spatial arrangement, difference between resistance levels) and rainfall properties to obtain a consistent significant effect in terms of disease reduction

    Potentialités des associations de variétés pour limiter la progression épidémique de la septoriose du blé : rôle des mécanismes de dispersion des spores par la pluie dans un couvert végétal hétérogène

    No full text
    Increasing plant diversity within a crop by the use of cultivar mixtures is a strategy which allows to reduce severity of windborne diseases. Potentialities of this cropping practice have still to be precisely characterized in the case of rain-borne diseases, such as septoria tritici blotch during its spring epidemiological stage. This disease, due to the pathogen fungus Mycosphaerella graminicola, is prevalent on wheat crops and it may be result in substantial yield losses, up to -40%. Field experiments were carried out during five years, from 2008 to 2012, at the Grignon location (Yvelines, France), with a mixture consisting of two wheat cultivars with contrasted resistance to M. graminicola in a 1/3 susceptible/resistant ratio. In comparison with their pure stands, we observed a severity decrease of septoria tritici blotch for the most susceptible cultivar (on average, less 45% of leaf pycnidial leaf surface on the three upper leaf levels), without significantly affect the more resistant cultivar. An original semi-automated methodology was developed to quantify the splash-dispersed spore flux in outdoor conditions. Experimental measurements allowed to correlate intensity of several rainfall events with spore dispersal within different canopies including a cultivar mixture. A mechanistic and stochastic model was implemented in order to describe disease potential progression within a heterogeneous three-dimensional plant canopy. This theoretical approach combines physics and epidemiology in order to, on one hand, (i) compute interception of raindrops with plant organs and the pathway of splash droplets within the canopy and, on the other hand, (ii) take into account cultivar resistance levels and the polycyclism of epidemics. From this model, we highlighted for two-component cultivar mixtures that the proportions and the difference between resistance levels of cultivars to mix together could be optimized in order to reduce disease severity. Furthermore, this modelling approach makes it possible to assess and identify the cultivar spatial distributions the most favourable to a decrease of progression of a splash-dispered disease. Previous studies about potentialities of cultivar mixtures to control splash-dispersed pathogen agents, led in some cases to conclusions with inconsistent and not in favour of this cropping practice. We showed here that it was possible under certain cultivar designing conditions (proportions, spatial arrangement, difference between resistance levels) and rainfall properties to obtain a consistent significant effect in terms of disease reduction.Accroître la diversité végétale au sein d'une culture par l'utilisation d'associations variétales est une stratégie qui permet de limiter la sévérité des maladies à dispersion éolienne. Les potentialités de cette pratique culturale restent à être caractérisées de manière précise dans le cas des maladies à dispersion pluviale, telle que la septoriose du blé durant sa phase épidémique. Cette maladie foliaire, due au champignon pathogène Mycosphaerella graminicola, est prédominante sur blé et est capable de causer des pertes substantielles de rendement, allant jusqu'à -40 %. Des expérimentations au champ ont été menées durant cinq années, de 2008 à 2012, sur le site INRA de Grignon (Yvelines, France), avec une association constituée de deux variétés de blé ayant des niveaux contrastés de résistance à M. graminicola, et dont les proportions étaient de une plante sensible pour trois assez résistantes. Par rapport à leur culture monovariétale respective, nous avons observé une diminution de la sévérité de la septoriose sur la plus sensible des variétés (en moyenne, 45 % de surface pycnidiale foliaire en moins sur les trois dernières feuilles), sans affecter significativement la variété plus résistante. Une méthodologie originale semi-automatisée a été développée pour quantifier le flux de spores dispersés par la pluie en conditions naturelles. Les mesures expérimentales ont permis de corréler l'intensité de plusieurs épisodes pluvieux avec la dispersion de spores au sein de différents couverts incluant des associations variétales. Un modèle mécaniste et stochastique a été développé afin de décrire la progression du potentiel de maladie au sein d'un couvert végétal hétérogène en trois dimensions. Cette approche théorique combine physique et épidémiologie, d'une part, (i) pour calculer l'interception des gouttes de pluie avec les organes végétaux et la trajectoire des gouttelettes d'éclaboussement au sein du couvert et, d'autre part, (ii) pour prendre en compte les niveaux de résistance variétale et la nature polycyclique de l'épidémie. À partir de ce modèle, il a été mis en évidence pour des associations de deux variétés que les proportions, ainsi que le différentiel de résistance entre les variétés à associer, pouvaient être optimisées pour réduire la sévérité de la maladie. Par ailleurs, ce modèle permet d'évaluer et d'identifier les distributions spatiales des variétés les plus propices à une réduction de la progression d'une maladie à dispersion pluviale. Parmi les précédents travaux traitant des potentialités des associations de variétés pour lutter contre des pathogènes dispersés par l'action mécanique de la pluie, certains avançaient des conclusions souvent contradictoires et peu en faveur de cette pratique. Nous avons montré ici qu'il est possible sous certaines conditions d'association de variétés (proportions, agencement spatial, différentiel de résistance globale) et de pluviométrie d'obtenir un effet significatif en termes de réduction de la maladie

    Using crop-pathogen modeling to identify plant traits to control Zymoseptoria tritici epidemics on wheat

    Get PDF
    Diversification in pathogen control methods to reduce the severity of economically important foliar diseases such as Zymoseptoria tritici on wheat is needed. One way is to identify plant physiological and architectural traits that influence disease development and that can be selected in the process of crop breeding. Such traits may be used for improving tolerance or disease escape. Traits favoring disease escape, the focus of our work, may significantly decrease crop epidemics (Robert et al., 2018). However, understanding the role of such traits in crop-pathogen interactions is a daunting task because the interactions are multiple and dynamic in time. To characterize and quantify crop-pathogen interactions, an innovative trait-based and resource-based modeling framework was developed (Precigout et al., 2017). In this framework, the pathosystem is assumed to respond dynamically to both architecture and physiological status of the host canopy. A canopy consists of plenty of small patches, i.e. small functional and infectable units of leaf tissue. Production of new patches, for canopy growth and renewal of photosynthetically active plant tissues, is a function of the available resources produced by the other patches. Pathogen spores can contaminate nearby healthy patches. The definition of patch proximity depends on dispersal abilities of the pathogen and canopy architecture. We used and adapted this modeling framework to quantify the effects of several plant traits on Zymoseptoria tritici epidemics for varied climate scenarios. The complex infection cycle of Z. tritici characterized by a long symptomless incubation period was implemented in the model. We studied plant architectural traits such as leaf size or stem height, and plant physiological traits such as leaf lifespan or leaf metabolite contents. In our simulations, these traits impacted the epidemics dynamics though their effects on pathogen dispersal and on the amount of resources available for the pathogen. Sensitivity analyses showed how disease severity depended on plant traits and pathogen virulence. The importance of several plant and pathogen traits could be linked to the pathogen’s ability to manage the race for the colonization of the canopy in the face of canopy growth. Playing on host traits also made it possible to simulate different wheat varieties - with contrasted heights, pathogen resistance or precocity - to characterize the behavior of the pathosystem of interest for different host ideotypes. We argue that this kind of trait-based modeling approach is a valuable tool to identify plant traits promoting more resilient agroecosystems in particular for crop breeding in a context of innovative and sustainable crop protection

    Using physiologically and spatially structured consumer- resource population models to address current issues in plant pathology

    No full text
    Epidemiologists and pathologists for addressing topical questions about, for example, the efficiency of agroecological solutions to mitigating crop diseases or their impact on pathogen evolution. We propose here to showcase two modeling approaches that our team is currently using in this context. Firstly, based on the framework of physiologically structured population models and its numerical implementation (referred to as the EBTtool) we represent a (multi-) seasonally growing crop canopy as a dynamic collection of small infectable patches of leaf tissue with intrinsic and dynamic properties (e.g. age, position in the canopy, nutrient content, infection status). Dynamics of predicted disease epidemics depend on the dynamic properties of all the patches over time. Secondly, the agent-based modeling environment NetLogo provides a conceptual framework to model spatially extended dynamics of disease progression in explicit landscapes with different spatial arrangements of crops that are not necessarily static over the cropping seasons. We are using these two modeling approaches to study resource dynamics at the canopy and landscape scales as a way to explore the potential of regulating crop pathogens by reducing or diversifying nitrogen fertilization practices in the pathosystems wheat/rusts and wheat/septoria tritici blotch. These modeling approaches offer the opportunity to (1) predict short and long term epidemiological dynamics based on assumptions on the consumer-resource interactions at the lesion scale, (2) to reveal pathogen trade-offs (transmission, virulence, aggressiveness) that emerge from the interactions between the pathogen and ecophysiological and morphological dynamics of the crop canopy, (3) to study the effect of spatial resource heterogeneity on pathogen dynamics, adaptation and maladaptation

    Contrasting plant height can improve the control of rain-borne diseases in wheat cultivar mixture: modelling splash dispersal in 3-D canopies

    No full text
    International audienceBackground and AimsGrowing cultivars differing by their disease resistance level together (cultivar mixtures) can reduce the propagation of diseases. Although architectural characteristics of cultivars are little considered in mixture design, they could have an effect on disease, in particular through spore dispersal by rain splash, which occurs over short distances. The objective of this work was to assess the impact of plant height of wheat cultivars in mixtures on splash dispersal of Zymoseptoria tritici, which causes septoria tritici leaf blotch.MethodsWe used a modelling approach involving an explicit description of canopy architecture and splash dispersal processes. The dispersal model computed raindrop interception by a virtual canopy as well as the production, transport and interception of splash droplets carrying inoculum. We designed 3-D virtual canopies composed of susceptible and resistant plants, according to field measurements at the flowering stage. In numerical experiments, we tested different heights of virtual cultivars making up binary mixtures to assess the influence of this architectural trait on dispersal patterns of spore-carrying droplets.Key ResultsInoculum interception decreased exponentially with the height relative to the main inoculum source (lower diseased leaves of susceptible plants), and little inoculum was intercepted further than 40 cm above the inoculum source. Consequently, tall plants intercepted less inoculum than smaller ones. Plants with twice the standard height intercepted 33 % less inoculum than standard height plants. In cases when the height of suscpeptible plants was doubled, inoculum interception by resistant leaves was 40 % higher. This physical barrier to spore-carrying droplet trajectories reduced inoculum interception by tall susceptible plants and was modulated by plant height differences between cultivars of a binary mixture.ConclusionsThese results suggest that mixture effects on spore dispersal could be modulated by an adequate choice of architectural characteristics of cultivars. In particular, even small differences in plant height could reduce spore dispersal

    Assessing the impacts of anthropogenic sounds on early stages of benthic invertebrates: The “ Larvosonic system”

    No full text
    Noise produced by human activities has increased in the oceans over the last decades. Whereas most studies have focused on the impact of anthropogenic noise on marine mammals and fishes, those focusing on marine invertebrates are rarer and more recent, especially when considering peri-metamorphic benthic stages, highly sensitive to anthropogenic perturbations. A careful review of the literature reveals a simplistic characterization of the acoustics within the containers used to quantify larval and juvenile responses to noise, thus weakening the conclusions of such works. To address this problem, we developed the Larvosonic system, a laboratory tank equipped with acoustic assets to assess the impacts of noise on young stages of marine invertebrates. We first provide a careful analysis of the tank sound field using different sound types, and we assess the effects of expanded polystyrene units on the sounds emitted by a professional audio system in order to dampen reverberation and resonance. Then, we apply this acoustic calibration to the effects of both pile driving and drilling noises on postlarvae of the scallop bivalve Pecten maximus. Acoustic recordings highlight that diffuser and bass trap components constitute effective underwater sound absorbents, reducing the reflection of the whole frequency bandwidth. Scallop experiments reveal that both type and level of the tested noise influenced postlarval growth, with interactive effects between trophic environment and noise level/spectra. The Larvosonic system thus constitutes an efficient tool for bioacoustics research on bentho-planktonic invertebrate species
    corecore