1,114 research outputs found
A hashtag worth a thousand words: Discursive strategies around #JeNeSuisPasCharlie after the 2015 Charlie Hebdo shooting
Following a shooting attack by two self-proclaimed Islamist gunmen at the offices of French satirical weekly Charlie Hebdo on 7 January 2015, there emerged the hashtag #JeSuisCharlie on Twitter as an expression of solidarity and support for the magazine’s right to free speech. Almost simultaneously, however, there was also #JeNeSuisPasCharlie explicitly countering the former, affirmative hashtag. Based on a multimethod analysis of 74,047 tweets containing #JeNeSuisPasCharlie posted between 7 and 11 January, this article reveals that users of the hashtag under study employed various discursive strategies and tactics to challenge the mainstream framing of the shooting as the universal value of freedom of expression being threatened by religious extremism, while protecting themselves from the risk of being viewed as disrespecting victims or endorsing the violence committed. The significance of this study is twofold. First, it extends the literature on strategic speech acts by examining how such acts take place in a social media context. Second, it highlights the need for a multidimensional and reflective methodology when dealing with data mined from social media
Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera
In October 2013, the Italian Ministry approved the funding of a Research &
Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made
in Italy (TECHE)", devoted to the development of a demonstrator for a camera
for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists
of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on
an electronics designed for signal sampling. Preliminary tests on a matrix of
sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on
electronic prototypes produced by SITAEL S.p.A. will be presented. In
particular, we used different designs of the electronics in order to optimize
the output signals in terms of tail cancellation. This is crucial for
applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with
the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) -
PoS(Scineghe2014)00
Gleam: the GLAST Large Area Telescope Simulation Framework
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented.Comment: 10 pages, Late
Simulating the High Energy Gamma-ray sky seen by the GLAST Large Area Telescope
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented. A new event display based
on the HepRep protocol was implemented. The full simulation was used to
simulate a full week of GLAST high energy gamma-ray observations. This paper
outlines the contribution developed by the Italian GLAST software group.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope
The Fermi-LAT experiment recently reported high precision measurements of the
spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV.
The spectrum shows no prominent spectral features, and is significantly harder
than that inferred from several previous experiments. Here we discuss several
interpretations of the Fermi results based either on a single large scale
Galactic CRE component or by invoking additional electron-positron primary
sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that
while the reported Fermi-LAT data alone can be interpreted in terms of a single
component scenario, when combined with other complementary experimental
results, specifically the CRE spectrum measured by H.E.S.S. and especially the
positron fraction reported by PAMELA between 1 and 100 GeV, that class of
models fails to provide a consistent interpretation. Rather, we find that
several combinations of parameters, involving both the pulsar and dark matter
scenarios, allow a consistent description of those results. We also briefly
discuss the possibility of discriminating between the pulsar and dark matter
interpretations by looking for a possible anisotropy in the CRE flux.Comment: 29 pages, 12 figures. Final version accepted for publication in
Astroparticle Physic
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements
For the first time a complete set of the most recent direct data on primary
cosmic ray spectra is used as input into calculations of muon flux at sea level
in wide energy range GeV. Computations have been performed
with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained
muon intensity with the data of muon experiments shows, that measurements of
primary nuclei spectra conform to sea level muon data only up to several tens
of GeV and result in essential deficit of muons at higher energies. As it
follows from our examination, uncertainties in muon flux measurements and in
the description of nuclear cascades development are not suitable to explain
this contradiction, and the only remaining factor, leading to this situation,
is underestimation of primary light nuclei fluxes. We have considered
systematic effects, that may distort the results of the primary cosmic ray
measurements with the application of the emulsion chambers. We suggest, that
re-examination of these measurements is required with the employment of
different hadronic interaction models. Also, in our point of view, it is
necessary to perform estimates of possible influence of the fact, that sizable
fraction of events, identified as protons, actually are antiprotons. Study of
these cosmic ray component begins to attract much attention, but today nothing
definite is known for the energies GeV. In any case, to realize whether
the mentioned, or some other reasons are the sources of disagreement of the
data on primaries with the data on muons, the indicated effects should be
thoroughly analyzed
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
Gamma-ray flares from the Crab Nebula
A young and energetic pulsar powers the well-known Crab Nebula. Here we
describe two separate gamma-ray (photon energy >100 MeV) flares from this
source detected by the Large Area Telescope on board the Fermi Gamma-ray Space
Telescope. The first flare occurred in February 2009 and lasted approximately
16 days. The second flare was detected in September 2010 and lasted
approximately 4 days. During these outbursts the gamma-ray flux from the nebula
increased by factors of four and six, respectively. The brevity of the flares
implies that the gamma rays were emitted via synchrotron radiation from PeV
(10^15 eV) electrons in a region smaller than 1.4 10^-2 pc. These are the
highest energy particles that can be associated with a discrete astronomical
source, and they pose challenges to particle acceleration theory.Comment: Contact authors: Rolf Buehler,[email protected]; Stefan
Funk,[email protected]; Roger Blandford,rdb3@stanford ; 16 pages,2
figure
- …