1,237 research outputs found

    Carbonaceous molecules in the oxygen-rich circumstellar environment of binary post-AGB stars: C_{60} fullerenes and polycyclic aromatic hydrocarbons

    Full text link
    Context. The circumstellar environment of evolved stars is generally rich in molecular gas and dust. Typically, the entire environment is either oxygen-rich or carbon-rich, depending on the evolution of the central star. Aims. In this paper we discuss three evolved disc sources with evidence of atypical emission lines in their infrared spectra. The stars were taken from a larger sample of post-AGB binaries for which we have Spitzer infrared spectra, characterised by the presence of a stable oxygen-rich circumbinary disc. Our previous studies have shown that the infrared spectra of post-AGB disc sources are dominated by silicate dust emission, often with an extremely high crystallinity fraction. However, the three sources described here are selected because they show a peculiar molecular chemistry. Methods. Using Spitzer infrared spectroscopy, we study in detail the peculiar mineralogy of the three sample stars. Using the observed emission features, we identify the different observed dust, molecular and gas species. Results. The infrared spectra show emission features due to various oxygen-rich dust components, as well as CO2 gas. All three sources show the strong infrared bands generally ascribed to polycyclic aromatic hydrocarbons. Furthermore, two sample sources show C60 fullerene bands. Conclusions. Even though the majority of post-AGB disc sources are dominated by silicate dust in their circumstellar environment, we do find evidence that, for some sources at least, additional processing must occur to explain the presence of large carbonaceous molecules. There is evidence that some of these sources are still oxygen-rich, which makes the detection of these molecules even more surprising.Comment: Accepted for publication in Astronomy and Astrophysics, 10 pages, 7 figure

    Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications

    Get PDF
    Drugs used for the prevention and the treatment of osteoporosis exert various favourable and unfavourable extra-skeletal effects whose importance is increasingly recognized notably for treatment selection. INTRODUCTION: The therapeutic armamentarium for the prevention and the treatment of osteoporosis is increasingly large, and possible extra-skeletal effects of available drugs could influence the choice of a particular compound. METHODS: The present document is the result of a national consensus, based on a systematic and critical review of the literature. RESULTS: Observational research has suggested an inverse relationship between calcium intake and cardiovascular diseases, notably through an effect on blood pressure, but recent data suggest a possible deleterious effect of calcium supplements on cardiovascular risk. Many diverse studies have implicated vitamin D in the pathogenesis of clinically important non-skeletal functions or diseases, especially muscle function, cardiovascular disease, autoimmune diseases and common cancers. The possible effects of oral or intravenous bisphosphonates are well-known. They have been associated with an increased risk of oesophageal cancer or atrial fibrillation, but large-scale studies have not found any association with bisphosphonate use. Selective oestrogen receptor modulators have demonstrated favourable or unfavourable extra-skeletal effects that vary between compounds. Strontium ranelate has a limited number of non-skeletal effects. A reported increase in the risk of venous thromboembolism is not found in observational studies, and very rare cases of cutaneous hypersensitivity reactions have been reported. Denosumab has been introduced recently, and its extra-skeletal effects still have to be assessed. CONCLUSION: Several non-skeletal effects of bone drugs are well demonstrated and influence treatment choices

    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model

    Full text link
    A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page

    A pooled analysis of fall incidence from placebo‐controlled trials of denosumab

    Get PDF
    Recent studies suggest that the RANK/RANKL system impacts muscle function and/or mass. In the pivotal placebo‐controlled fracture trial of the RANKL inhibitor denosumab in women with postmenopausal osteoporosis, treatment was associated with a lower incidence of non‐fracture‐related falls (p = 0.02). This ad hoc exploratory analysis pooled data from five placebo‐controlled trials of denosumab to determine consistency across trials, if any, of the reduction of fall incidence. The analysis included trials in women with postmenopausal osteoporosis and low bone mass, men with osteoporosis, women receiving adjuvant aromatase inhibitors for breast cancer, and men receiving androgen deprivation therapy for prostate cancer. The analysis was stratified by trial, and only included data from the placebo‐controlled period of each trial. A time‐to‐event analysis of first fall and exposure‐adjusted subject incidence rates of falls were analyzed. Falls were reported and captured as adverse events. The analysis comprised 10,036 individuals; 5030 received denosumab 60 mg subcutaneously once every 6 months for 12 to 36 months and 5006 received placebo. Kaplan–Meier estimates showed an occurrence of falls in 6.5% of subjects in the placebo group compared with 5.2% of subjects in the denosumab group (hazard ratio = 0.79; 95% confidence interval 0.66–0.93; p = 0.0061). Heterogeneity in study designs did not permit overall assessment of association with fracture outcomes. In conclusion, denosumab may reduce the risk of falls in addition to its established fracture risk reduction by reducing bone resorption and increasing bone mass. These observations require further exploration and confirmation in studies with muscle function or falls as the primary outcome

    Effect of substrate conditions on the plasma beam deposition of amorphous hydrogenated carbon

    Get PDF
    A study on the effect of substrate conditions was performed for the plasma beam deposition of amorphous hydrogenated carbon ( a -C:H) from an expanding thermal argon/acetylene plasma on glass and crystalline silicon. A new substrate holder was designed, which allows the control of the substrate temperature independent of the plasma settings with an accuracy of 2 K. This is obtained via a combination of a good control of the holder’s yoke temperature and the injection of helium gas between thermally ill connected parts of the substrate holder system. It is demonstrated that the substrate temperature influences both the a -C:H material quality and the deposition rate. The deposition rate and substrate temperature are presented as the two parameters which determine the material quality. In situ studies prove that the deposition process is constant in time and that thermally activated etching processes are unlikely to contribute significantly during deposition. Preliminary experiments with an additional substrate bias reveal that an energetic ion bombardment of the growingfilm surface does not influence the deposition process. A tentative deposition model is proposed based on the creation and destruction of active sites, which depend on the particle fluxes towards the substrate and the substrate temperature. This model allows the qualitative explanation of the observed deposition results

    Degenerate Plebanski Sector and Spin Foam Quantization

    Full text link
    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact ensures that its spin foam quantization is given by the SU(2) Crane-Yetter model and allows to test various approaches of imposing the simplicity constraints. Our analysis strongly suggests that restricting representations and intertwiners in the state sum for Spin(4) BF theory is not sufficient to get the correct vertex amplitude. Instead, for a general theory of Plebanski type, we propose a quantization procedure which is by construction equivalent to the canonical path integral quantization and, being applied to our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic feature of this procedure is the use of secondary second class constraints on an equal footing with the primary simplicity constraints, which leads to a new formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references adde

    Effective Hamiltonian Constraint from Group Field Theory

    Full text link
    Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.Comment: 14 page
    corecore