1,773 research outputs found

    Cosmological evolution as squeezing: a toy model for group field cosmology

    Get PDF
    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application

    Discrete and continuum third quantization of Gravity

    Get PDF
    We give a brief introduction to matrix models and the group field theory (GFT) formalism as realizations of the idea of a third quantization of gravity, and present in some more detail the idea and basic features of a continuum third quantization formalism in terms of a field theory on the space of connections, building up on the results of loop quantum gravity that allow to make the idea slightly more concrete. We explore to what extent one can rigorously define such a field theory. Concrete examples are given for the simple case of Riemannian GR in 3 spacetime dimensions. We discuss the relation between GFT and this formal continuum third quantized gravity, and what it can teach us about the continuum limit of GFTs

    Stochastic macromodeling for hierarchical uncertainty quantification of nonlinear electronic systems

    Get PDF
    A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology

    Cosmology from Group Field Theory Formalism for Quantum Gravity

    No full text
    We identify a class of condensate states in the group field theory (GFT) approach to quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a non-linear and non-local extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semi-classical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry

    Operator systems for tolerance relations on finite sets

    Full text link
    We study the duals of a certain class of finite-dimensional operator systems, namely the class of operator systems associated to tolerance relations on finite sets or equivalently the class of operator systems that are associated with graphs. In the case where the graphs associated with these operator systems are chordal we are able to find concrete realizations of their duals as sitting inside of finite-dimensional CC^*-algebras. We then use these concrete realizations to compute the CC^*-envelopes, propagation numbers and extremal rays of these duals in the chordal case. Finally, we exemplify our results by applying them to operator systems of band matrices.Comment: 16 page

    Editorial for the special issue “progress in group field theory and related quantum gravity formalisms”

    Get PDF
    This editorial introduces the Special Issue “Progress in Group Field Theory and Related Quantum Gravity Formalisms” which includes a number of research and review articles covering results in the group field theory (GFT) formalism for quantum gravity and in various neighbouring areas of quantum gravity research. We give a brief overview of the basic ideas of the GFT formalism, list some of its connections to other fields, and then summarise all contributions to the Special Issue

    An interferometric study of the post-AGB binary 89 Herculis. II Radiative transfer models of the circumbinary disk

    Get PDF
    The presence of disks and outflows is widespread among post-AGB binaries. In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB system. The data showed this flux to arise from close to the central binary. Scattering off the inner rim of the circumbinary disk, or in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the disk we aim to discriminate between these two configurations. By including Herschel/SPIRE photometry, we extend the SED such that it now fully covers UV to sub-mm wavelengths. The MCMax radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of Paper I, to constrain the structure of the disk and in particular of its inner rim. The near-IR visibility data require a smooth inner rim, here obtained with a two-power-law parameterization of the radial surface density distribution. A model can be found that fits all the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths though, the reason being the opposing constraints imposed by the optical and near-IR interferometric data. A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all the IR but not the optical observations of 89 Her. Another dusty, outflow or halo, component therefore needs to be added to the system.Comment: 15 pages, in pres

    The geometric role of symmetry breaking in gravity

    Full text link
    In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry the homogeneous space G/H. The deep reason for this is Cartan's "method of equivalence," giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.Comment: 4 pages. Contribution written for proceedings of the conference "Loops 11" (Madrid, May 2011

    Onteigening als vervolg op vrijwillige stedelijk herverkaveling

    Get PDF
    Contains fulltext : 209075.pdf (publisher's version ) (Open Access)3 p

    Cosmological perturbations from full quantum gravity

    Get PDF
    The early universe provides an opportunity for quantum gravity to connect to observation by explaining the large-scale structure of the Universe. In the group field theory (GFT) approach, a macroscopic universe is described as a GFT condensate; this idea has already been shown to reproduce a semiclassical large universe under generic conditions, and to replace the cosmological singularity by a quantum bounce. Here we extend the GFT formalism by introducing additional scalar degrees of freedom that can be used as a physical reference frame for space and time. This allows, for the first time, the extraction of correlation functions of inhomogeneities in GFT condensates: in a way conceptually similar to inflation, but within a quantum field theory of both geometry and matter, quantum fluctuations of a homogeneous background geometry become the seeds of cosmological inhomogeneities. We find approximately scale-invariant initial quantum fluctuations in the local volume, with naturally small amplitude; this behaviour extends to other quantities such as the matter density. These results confirm the potential of GFT condensate cosmology to provide a purely quantum gravitational foundation for the understanding of the early universe
    corecore