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The early universe provides an opportunity for quantum gravity to connect to observation by explaining

the large-scale structure of the Universe. In the group field theory (GFT) approach, a macroscopic universe

is described as a GFT condensate; this idea has already been shown to reproduce a semiclassical large

universe under generic conditions, and to replace the cosmological singularity by a quantum bounce. Here

we extend the GFT formalism by introducing additional scalar degrees of freedom that can be used as a

physical reference frame for space and time. This allows, for the first time, the extraction of correlation

functions of inhomogeneities in GFT condensates: in a way conceptually similar to inflation, but within a

quantum field theory of both geometry and matter, quantum fluctuations of a homogeneous background

geometry become the seeds of cosmological inhomogeneities. We find approximately scale-invariant initial

quantum fluctuations in the local volume, with naturally small amplitude; this behaviour extends to other

quantities such as the matter density. These results confirm the potential of GFT condensate cosmology to

provide a purely quantum gravitational foundation for the understanding of the early universe.

DOI: 10.1103/PhysRevD.98.106019

I. INTRODUCTION

Cosmology provides the most promising avenue for

connecting quantum gravity to observable physics; this has

motivated much work in particular on models replacing the

big bang with a bounce [1]. Since our Universe is very well

described on large scales by a simple Friedmann-Lemaître-

Robertson-Walker (FLRW) metric with linear perturba-

tions, one then looks for a manageable approximation or

truncation of quantum gravity to nearly homogeneous and

isotropic universes.

In the last years, a new promising approach has emerged.

In the group field theory (GFT) formalism for quantum

gravity [2] (itself a second quantized formalism for loop

quantum gravity (LQG) [3] and an enrichment of random

tensor models [4] by group theoretic data), in which space

and time are fundamentally made up of discrete “atoms of

geometry,” one can describe a macroscopic, homogeneous

universe as a condensate, a highly coherent configuration

of many such atoms. Condensates realize a natural quantum

notion of homogeneity—the condensation of many quanta

into a single microscopic quantum state—and the idea that

spacetime could be a type of Bose-Einstein condensate had

been considered earlier [5]. In GFT, such condensates

describe spatially homogeneous universes [6]. By coupling

to a massless scalar (clock) field, it was shown such

universes satisfy the Friedmann dynamics of classical

general relativity (GR) in a semiclassical regime [7]; the

semiclassical regime is reached for generic initial condi-

tions [8]. In addition, at high curvatures such condensates

undergo a bounce similar to the one seen in loop quantum

cosmology. For some GFT models, this bounce can be

followed by a long lasting phase of acceleration, without

the need to introduce an inflaton [9,10].

An open question in the study of GFT condensates (as in

other approaches deriving cosmology from full quantum

gravity) has been to extend these results from exactly

homogeneous to inhomogeneous universes, i.e., to realistic

and testable situations. In previous studies [11,12], a major

obstacle was the localization of perturbations in a fully

background-independent context, without a manifold or

coordinates. Ideas from quantum cosmology such as a Born-

Oppenheimer approximation for inhomogeneities [13]
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are not directly applicable to GFT where no separation of

perturbation modes, e.g., as eigenmodes of a Laplacian, is

readily available.

Our starting point is to realize that the related problem of

“localizing events in time” was solved by introducing a

scalar field, used as a “clock” to label evolution of the

geometry; the problem of “localizing events in spacetime”

is then solved by coupling four scalar fields (in four

spacetime dimensions) to gravity, using these scalars as

relational clocks and rods, i.e., as a physical coordinate

system. This idea has a long history in classical and

quantum gravity, the most famous example perhaps being

Brown-Kuchař dust [14]. Such models, in which one can

solve the constraints of canonical GR and define observ-

ables on a physical phase space, have had numerous

applications in LQG [15].

We define a class of GFT models for gravity coupled to

four reference scalar fields ϕI, I ¼ 0;…; 3, generalizing
Ref. [7]. This allows us to define observables that corre-

spond to a local volume element at each point in spacetime,

and hence capture (scalar) inhomogeneities.

Working in the mean-field approximation to the full

quantum GFT, the effective dynamics for geometric

observables can be extracted by the same methods as in

Ref. [7]. We then assume a background continuum geom-

etry that is homogeneous, corresponding to a condensate

state independent of the “rod” fields, to reproduce the usual

setup for cosmological perturbations.

Next we compute quantum fluctuations of local volume

observables in such a quantum state, staying within the

full quantum gravity framework, but in a hydrodynamic

approximation. We propose their two-point function as the

relevant quantity in order to compare to standard cosmol-

ogy and observation, and show that this is nonvanishing

for a homogeneous condensate, very similar to how

inhomogeneities arise from quantum vacuum fluctuations

in inflation. The results outline a concrete, workable

formalism for deriving a power spectrum of cosmological

perturbations directly from a theory of quantum gravity,

and bring quantum gravity closer to observational tests.

II. RELATIONAL CLOCKS AND RODS

We introduce physical reference frames and define rela-

tional dynamics first in classicalGR, to later implement these

ideas in the quantum GFT formalism. Reference matter

backreacts on the geometry, although we will consider

limiting cases in which this backreaction can be negligible.

First, consider a single massless, free scalar field, used as

a relational clock in a flat FLRW metric, with action

Sϕ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ ¼ V0

Z
dt

a3

2N
_ϕ2 ð1Þ

where VðtÞ ¼ a3ðtÞV0 is the 3-volume of space given in

terms of a fiducial volume V0. The conjugate momentum

πϕ ≔ V _ϕ=N is a conserved quantity; for any choice of time

variable t, then, ϕðtÞ is strictly monotonic (unless πϕ ¼ 0,

which has to be excluded). Hence ϕ is a good clock, and the

dynamics of the Universe can be expressed in terms of ϕ;

the Friedmann equation becomes

�
1

V

dV

dϕ

�
2

¼ 9

�
_a

aN

V

πϕ

�
2

¼ 12πG; ð2Þ

and its solutions are

VðϕÞ ¼ α expð�
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ϕÞ; ð3Þ

where the sign depends on the choice of time orientation.

The scalar action (1) is invariant under translations

ϕðtÞ ↦ ϕðtÞ þ ϕ0 and time reversal ϕðtÞ ↦ −ϕðtÞ.
This construction can be straightforwardly generalized:

given four scalars ϕI , one can identify the points fpg of an

open (connected) region by the values ϕIðpÞ if the gradients
of ϕI are everywhere nondegenerate, detð∂αϕ

IÞ ≠ 0.

Similarly to a clock scalar field, one has to impose

symmetries on the dynamics of these four scalars to be used

as a material reference frame. For instance, consider the

class of models in Ref. [15], with action

Sm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðgμν½ρ∂μT∂νT þ AðρÞVμVν

þ2BðρÞ∂μTVν� þ ΛðρÞÞ; Vμ ≔ Wk∂μZ
k ð4Þ

depending on eight scalars ðT; Zk; ρ;WkÞ. The dynamical

fields T and Zk give a local reference frame for space and

time. Depending on AðρÞ, BðρÞ and ΛðρÞ, Eq. (4) can

reduce to Brown-Kuchař dust or null, nonrotational or

Gaussian dust. Equation (4) is invariant under constant

shifts in T and Zj, sign reversal of all four fields,

TðxÞ ↦ TðxÞ þ T0; ZjðxÞ ↦ ZjðxÞ þ Z
j
0; ð5Þ

ðTðxÞ ↦ −TðxÞ; ZjðxÞ ↦ −ZjðxÞÞ; ð6Þ

and O(3) transformations

ZkðxÞ ↦ Ok
jZ

jðxÞ; WkðxÞ ↦ ðO−1ÞkjWjðxÞ: ð7Þ

Equation (7) implements isotropy of space: rotating the

“rods” will define another, equivalent set of rods. We will

assume all these transformations are symmetries of our

reference scalar matter; they would also be symmetries of

the coordinates of a good reference frame.
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III. GROUP FIELD THEORY WITH REFERENCE

SCALAR MATTER

We work with GFT models for gravity coupled to four

reference scalar fields, defined in analogy to known models

for gravity and a single (clock) field [7,16].

The basic ingredient of any GFT is a quantum field on an

abstract group manifold [2], whose excitations form quanta

of geometry labeled by data in the domain space of this

field. We picture these quanta as tetrahedra equipped with a

discrete SU(2) connection (parallel transports across the

four faces) and with real labels for the scalar degrees of

freedom (d.o.f.). The same variables are associated to a

LQG spin network vertex with four open links, for gravity

coupled to four scalar fields [3]. Concretely, our GFT field

is a complex field on SUð2Þ4 ×R
4, denoted by φðgI;ϕJÞ

where gI ∈ SUð2Þ, ϕJ ∈ R.

One can then define the quantum GFT in the path

integral or operator formalism; the latter is well suited

for the study of GFT condensates [3,6]. Here one postulates

canonical commutation relations

½φ̂ðgI;ϕJÞ;φ̂†ðg0I;ϕ0JÞ�¼
Z

dhδ4ðg0Ihg−1I Þδ4ðϕJ−ϕ0JÞ ð8Þ

while two φ̂ or two φ̂† operators commute.

The Hilbert space is defined starting from a “no-space”

vacuum j∅i, annihilated by φ̂ðgI;ϕJÞ. The bosonic exci-

tations over j∅i, created by φ̂†ðgI;ϕJÞ, are interpreted as

geometric tetrahedra. A state describing a macroscopic,

approximate continuum geometry contains a very large

number (potentially infinite) of such excitations.

The dynamics is governed by an action of the form

S½φ; φ̄� ¼ −

Z
d4gd4ϕφ̄ðgI;ϕJÞKφðgI;ϕJÞ þ V½φ; φ̄� ð9Þ

where the kernelK is taken to be local and contain derivatives

with respect to gI and ϕ
J. The precise forms ofK and V will

not be used in the following. They can be chosen such that the

GFT Feynman amplitudes correspond to the amplitudes of a

given spin foammodel [17], i.e., to a discrete path integral for

gravity coupled to four scalar fields. The perturbative

expansion in Feynman diagrams is then a sum over such

path integrals for different discretizations [2,3]. In order to

have a sum over simplicial lattices, the interaction V would

involve five fields, gluing five tetrahedra to a 4-simplex.

Other interactions, and general forms ofK, are suggested by

work on random tensor models and GFT renormalization.

We are interested in models that use scalar fields as

reference matter. Following the above discussion, we

assume that the GFT dynamics is invariant under

(i) arbitrary (constant) shifts in ϕI,

(ii) the parity/time-reversal transformation ϕI
↦ −ϕI ,

(iii) rotations ϕi
↦ Oi

jϕ
j where i, j ¼ 1, 2, 3.

The first of these forbids explicit dependence on ϕI.

We then work in an effective field theory/hydrodynamic

expansion of K in derivatives with respect to the ϕJ (as

developed in Refs. [7,16]); this leads to an effective low-

energy GFT dynamics that can be compared with cosmol-

ogy on large scales, where one can truncate K to second

derivatives.

The assumed symmetries (i)–(iii) force this derivative

expansion to be of the form

K¼K0þK1
Δϕi þ K̃

1
∂2

ϕ0 þ…; Δϕi ≡

X3

i¼1

∂2
ϕi ð10Þ

where … includes fourth and higher derivatives.

Beyond the symmetries (i)–(iii), we make no assump-

tions about the form of V. We will employ a weak-coupling

approximation in which the effect of V on the dynamics is

negligible.

IV. EFFECTIVE COSMOLOGICAL DYNAMICS

The proposal of GFT condensate cosmology [6] is that a

macroscopic, nearly homogeneous universe is well

approximated by a GFT condensate with a nonvanishing

field expectation value, σðgI;ϕJÞ ≔ hφ̂ðgI;ϕJÞi ≠ 0. In the

mean-field approximation, this condition is implemented

by choosing the coherent state

jσi≡NðσÞexp
�Z

d4gd4ϕσðgI;ϕJÞφ̂†ðgI;ϕJÞ
�
j∅i ð11Þ

and all dynamical information is determined by the mean

field σðgI;ϕJÞ. This corresponds to the Gross-Pitaevskii

approximation for weakly interacting Bose-Einstein con-

densates [18]. One then considers the expectation value

0 ¼ hσj δS½φ; φ̄�
φ̄ðgI;ϕJÞ jσi ¼

δS½σ; σ̄�
σ̄ðgI;ϕJÞ

¼ ðK0 þK1
Δϕi þ K̃

1
∂2

ϕ0 þ � � �ÞσðgI;ϕJÞ − δV½σ; σ̄�
σ̄ðgI;ϕJÞ ;

ð12Þ

the GFT analogue of the Gross-Pitaevskii equation for a

Bose-Einstein condensate.

We neglect higher than second derivatives, and use an

approximation in which the contribution of V is neglected.

The latter is compatible with the weak correlations in the

simple state (11) and, tentatively, with small spatial

gradients of the effective geometry. Including interactions

is possible [9], but we will show that our approximation

already allows for interesting cosmological dynamics.

COSMOLOGICAL PERTURBATIONS FROM FULL QUANTUM … PHYS. REV. D 98, 106019 (2018)

106019-3



The GFT equation of motion for σ becomes

ðK0 þK1
Δϕi þ K̃

1
∂2

ϕ0ÞσðgI;ϕJÞ ¼ 0: ð13Þ

We further restrict σ to isotropic (equilateral) tetrahedra

[7] (again this can be relaxed [19]); σ can then be expanded

in irreducible SU(2) representations as

σðgI;ϕJÞ ¼
X∞

j¼0

σjðϕJÞDjðgIÞ ð14Þ

where the D
jðgIÞ encode the equilateral shape of the

tetrahedra. Because this shape is taken to be fixed, σ only

depends on a single j, whose value specifies the local

volume and thus the cosmological scale factor. The volume

can be computed within full GFT as the expectation value

of a second quantized operator, see below.

The isotropic mean field σjðϕJÞ then satisfies

ð−Bj þ Aj∂
2

ϕ0 þ CjΔϕiÞσjðϕJÞ ¼ 0; ð15Þ

K0, K1 and K̃
1 have been rewritten as j-dependent

couplings with no further derivatives.

The results of Ref. [7] are recovered for a mean field of

the form

σjðϕJÞ≡ σ0jðϕ0Þ; ð16Þ

with a relational 3-volume operator at “time” ϕ0

V̂ðϕ0Þ ¼
Z

d4gd4g0φ̂†ðgI;ϕ0ÞVðgI; g0IÞφ̂ðg0I;ϕ0Þ: ð17Þ

VðgI; g0IÞ are matrix elements of the LQG volume operator

[20] between single-vertex spin network states.

Given a GFT state, hV̂ðϕ0Þi gives its total 3-volume

at relational time ϕ0. This appears in the Friedmann

equation (2), which connects GFT condensates to

cosmology.

In this case, generic initial conditions lead to a semi-

classical regime, in which the Universe expands to macro-

scopic size [7,8] and the 3-volume follows the classical

Friedmann solution (3). At small volumes, the Universe

undergoes a bounce, avoiding the classical singularity [7].

For example, if only a single spin j0 is excited, the

3-volume behaves as

hV̂ðϕ0Þi ∼
ϕ0

→�∞ jσ�j2 exp
�
�2

ffiffiffiffiffiffiffi
Bj0

Aj0

s
ϕ0

�
ð18Þ

for generic initial conditions (σ� ≠ 0), if Bj0
=Aj0

> 0; this

is precisely Eq. (3) with Bj0
=Aj0

≕ 3πG. VðϕÞ interpolates
between the classical contracting and expanding solutions,

and only ever vanishes for special initial conditions

[7,8,10]. Including interactions can prolong the accelerated

expansion after the bounce and cause a later recollapse,

producing a cyclic cosmology [9].

V. VOLUME PERTURBATIONS

IN GFT CONDENSATES

Our GFT model has enough d.o.f. to describe inhomo-

geneous quantum geometries and their dynamics. Here we

consider situations relevant for fundamental cosmology: we

study quantum fluctuations of the local 3-volume around a

nearly homogeneous background, seeking a quantum

gravitational mechanism for explaining the origin of

inhomogeneities, in a similar spirit to the inflationary

paradigm, where this mechanism is the imprint of quantum

fluctuations of the inflaton [21]. We show how such

mechanism, natural in any quantum field theory for gravity

and matter, is realized by GFT condensates, without

requiring an inflaton.

We start by generalizing Eq. (17) to a GFT for gravity

coupled to four reference scalar fields ϕI,

V̂ðϕJÞ ¼
Z

d4gd4g0φ̂†ðgI;ϕJÞVðgI; g0IÞφ̂ðg0I;ϕJÞ: ð19Þ

Now all four ϕJ take fixed values: V̂ðϕJÞ defines a local

volume element at the spacetime point specified by values

of the reference fields. The total 3-volume (17) is obtained

by integrating over the rods ϕi,

V̂ðϕ0Þ≡
Z

d3ϕV̂ðϕ0;ϕiÞ: ð20Þ

In a simple coherent state of the form (11), the expect-

ation value of V̂ðϕJÞ can be evaluated immediately,

hV̂ðϕJÞi ¼
Z

d4gd4g0σ̄ðgI;ϕJÞVðgI; g0IÞσðg0I;ϕJÞ: ð21Þ

For the isotropic wave function (16), we obtain

hV̂ðϕJÞi ¼
X∞

j¼0

Vjjσ0jðϕ0Þj2; ð22Þ

with eigenvalues Vj ∼ VPlj
3=2 of the volume operator. The

local and total 3-volume coincide [up to regularization of

the integral over ϕi in Eq. (20)], as expected in a

homogeneous geometry.

In cosmology the pattern of cosmic structure is encoded

in correlation functions for geometric observables. Here we

focus on local volume fluctuations hV̂ðϕJÞV̂ðϕ0JÞi in the

state (11), which depend on the one-body matrix elements

V2ðgI; g0IÞ of the squared volume operator. Using “squared

matrix elements” to characterize perturbations has been

suggested before [12], but without rods only global
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information was obtained. Here we can extract local

information about cosmological perturbations: Fourier

transforming from ϕi to their momenta ki introduces a

notion of wave number, defined with respect to the

reference matter.

We then obtain, within the full quantum gravity formal-

ism, a power spectrum of cosmological perturbations.

Consider a mean field perturbed around homogeneity,

σjðϕJÞ ¼ σ0jðϕ0Þð1þ ϵψ jðϕJÞÞ: ð23Þ

In this state, fluctuations of the volume take the form

h ˆ̃Vðϕ0; kiÞ ˆ̃Vðϕ00; k0iÞi − h ˆ̃Vðϕ0; kiÞih ˆ̃Vðϕ00; k0iÞi
¼ δðϕ0 − ϕ00Þ

X

j

V2
j jσ0jðϕ0Þj2½ð2πÞ3δ3ðki þ k0iÞ

þ ϵðψ̃ jðϕ0; ki þ k0iÞ þ ψ̃ jðϕ0;−ki − k0iÞÞ�; ð24Þ

where we have Fourier transformed V̂ and ψ j; the delta

function in ϕ0 arises because V̂ðϕJÞ is a density on scalar

field space. This power spectrum is a genuine quantum

correlation in the GFT condensate.

Remarkably, the dominant part of the power spectrum

ð2πÞ3δ3ðki þ k0iÞδðϕ0 − ϕ00Þ
X

j

V2
j jσ0jðϕ0Þj2 ð25Þ

is naturally scale invariant: it only depends on ϕ0. This

property follows from computing cosmological perturba-

tions on an exactly homogeneous background. Due to

quantum fluctuations, even in this case Eq. (24) is not zero:

it must then be scale invariant, with scale defined by the

reference matter. Within our mean-field approximation,

scale invariance and translational invariance, as expressed

by the momentum delta function in Eq. (24), are necessarily

connected.

In cosmology, the usual notion of scale invariance refers

to the dimensionless power spectrum, which is not directly

the quantity we compute here. Converting our expressions

into those appearing in the measured spectrum of inho-

mogeneities may introduce a dependence on k, in particular
since our notion of scale refers to reference matter, not

Cartesian coordinates. This is why we do not take over the

usual terminology from cosmology, but focus on the

spectrum that can be computed.

Deviations from exact scale invariance are encoded in

the last line of Eq. (24). They arise from inhomogeneous

fluctuations around a homogeneous condensate, which

should generically be present; approximate scale invariance

is intrinsically linked to such GFT fluctuations being small.

These fluctuations must solve the mean-field condensate

dynamics, so both their exact shape and their relative

amplitude are determined dynamically. Further deviations

will come from relaxing the mean-field approximation,

i.e., from using more refined quantum states. Such devia-

tions from scale invariance depend both on the coupling of

inhomogeneities with the homogeneous background and

on their own dynamics, as expected physically and in

agreement with usual cosmological perturbations. They are

fully determined by the GFT perturbation density field,

itself a solution to mean-field equations. A more detailed

study of solutions of such perturbed equations, and their

initial conditions, would be crucial to identify the precise

form of these deviations.

The amplitude of volume fluctuations relative to the

background, i.e., of cδṼðϕ0; kiÞ≡ ˆ̃Vðϕ0; kiÞ=hV̂ðϕ0Þi, is

obtained by dividing Eq. (24) by the squared background

volume hV̂ðϕ0Þi2 ≡ ð
R
dϕi

P
jVjjσ0jðϕ0Þj2Þ2. This ampli-

tude is of order 1=N, for N ≫ 1 quanta in the condensate.

For instance, considering only the scale-invariant contri-

bution and with only a single spin j0 excited, the power

spectrum of such perturbations is

PδVðkÞ ¼
V2
j0
jσ0j0ðϕ

0Þj2
ð
R
dϕiVj0

jσ0j0ðϕ
0Þj2Þ2 ¼

Vj0

ð
R
dϕiÞVðϕ0Þ ; ð26Þ

with Vðϕ0Þ ¼ Nðϕ0ÞVj0
. A small amplitude of scalar

perturbations, decreasing as the Universe expands, arises

naturally from the simplest GFT condensates.

For Cj=Bj < 0 in Eq. (15), inhomogeneous perturba-

tions decay relative to the homogeneous background at

large volumes; one approaches scale invariance even more

closely, further suppressing the deviations coming from the

inhomogeneous term. GFT interactions that produce a

long-lasting accelerated expansion after the bounce [9]

further suppress deviations from scale invariance.

The choice of vacuum, e.g., as made in inflation, is

replaced by the GFT condensate state (11) that refers to

both quantum geometric and matter d.o.f. This is because

such fluctuations are computed directly within the complete

quantum gravity formalism, which also defines the ultra-

violet completion of the theory.

VI. EXTENDING THE FORMALISM

TO DENSITY PERTURBATIONS

We showed that the statistics of scalar perturbations can

be computed explicitly for GFT condensates, fully within

the quantum gravity formalism, assuming that the mean

field describing the condensate is close to homogeneity. We

found a nearly scale-invariant power spectrum for volume

perturbations, with naturally small amplitude. Exact

scale invariance is found if the mean field is exactly

homogeneous.

The reason for using volume perturbations was that these

are simplest to compute in our formalism: they can be

expressed through expectation values and fluctuations of

local volume elements, given by the GFT Fock space

operator (19). Our principal goal was to show the feasibility
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of these computations in the full quantum gravity formal-

ism, and the generic features of the results.

Connecting our results to observation, however, ulti-

mately requires also considering perturbations in the matter

density. Their relation to volume perturbations is in general

gauge dependent, so one cannot a priori assume that the

spectrum of volume perturbations we found can be trans-

lated into an observational prediction. To close this gap, in

this section we show how to extend the arguments to

perturbations in the matter density. This is a more involved

calculation since in our formalism, in which spacetime is a

many-body quantum system, the natural observables are

“extensive” quantities such as volume or total energy. The

matter energy density is obtained from taking a quotient of

expectation values of primary extensive quantities.

We start with the kinetic energy density in a scalar field,

which is classically given by ρIkin ¼ ðπIϕÞ2=ð2V2Þ where

V ≡
ffiffiffi
h

p
corresponds to the local volume element, and πIϕ is

the momentum conjugate to the scalar field ϕI . Hence, to

construct a kinetic energy density we need to consider

operators corresponding to the conjugate momenta for the

four scalars; these are

π̂IϕðϕJÞ ¼ −
i

2

Z
d4g

�
φ̂†ðgI;ϕJÞ ∂φ̂ðgI;ϕ

JÞ
∂ϕI

−
∂φ̂†ðgI;ϕJÞ

∂ϕI
φ̂ðgI;ϕJÞ

�
; ð27Þ

as already defined for the homogeneous case in previous

work [7], where the scalar field momentum enters correctly

in the energy density appearing in the Friedmann equations.

From the expectation values of (19) and (27), we can

then define

ρIkinðϕJÞ ¼ 1

2

�hπ̂IϕðϕJÞi
hV̂ðϕJÞi

�2

; ð28Þ

and the total kinetic energy is ρkin ¼
P

Iρ
I
kin. At leading

order, fluctuations in the kinetic energy density are given by

δρ=ρ ¼
P

Iπ
I
ϕδπ

I
ϕ=ðρV2Þ − 2δV=V. Their two-point func-

tion is

hδρkinðϕ0; kiÞδρkinðϕ00; k0iÞi
ρkðϕ0Þ2

¼
P

IJπ
I
ϕðϕ0ÞπJϕðϕ0ÞhδπIϕðϕ0; kiÞδπJϕðϕ00; k0iÞi

ρkðϕ0Þ2Vðϕ0Þ4

− 4

P
Iπ

I
ϕðϕ0ÞhδπIϕðϕ0; kiÞδVðϕ00; k0iÞi

ρkðϕ0ÞVðϕ0Þ3

þ 4
hδVðϕ0; kiÞδVðϕ00; k0iÞi

Vðϕ0Þ2 : ð29Þ

We can now simplify calculations for the right-hand side by

again using a homogeneous mean field of the form

σjðϕJÞ≡ σ0jðϕ0Þ: ð30Þ

For this choice of mean field, we have already computed

the last term on the right-hand side and shown that it

gives a scale-invariant power spectrum with small ampli-

tude. For the other two terms, we use the fact that

derivatives of σj with respect to the rod fields vanish,

and that we hence have πiϕ ≡ hπiϕi ¼ 0 (i ¼ 1; 2; 3) and

thus ρkin ¼ ρ0kin. Strictly speaking, there needs to be a

nonzero energy density in these fields for them to form a

good reference frame. However, this energy density can be

arbitrarily small, so that an infinitesimal perturbation of

Eq. (30) will lead to a good reference frame. We assume the

validity of a perturbative expansion around Eq. (30), and

can consider the leading term in which such perturbations

are exactly zero.

The fluctuations in the kinetic energy then reduce to

hδρkinðϕ0; kiÞδρkinðϕ00; k0iÞi
ρkðϕ0Þ2

¼ 4
hδπ0ϕðϕ0; kiÞδπ0ϕðϕ00; k0iÞi

π0ϕðϕ0Þ2 − 8
hδπ0ϕðϕ0; kiÞδVðϕ00; k0iÞi

π0ϕðϕ0ÞVðϕ0Þ

þ 4
hδVðϕ0; kiÞδVðϕ00; k0iÞi

Vðϕ0Þ2 : ð31Þ

All terms on the right-hand side now give a scale-invariant

power spectrum: all expectation values involve observables

that do not depend on the rod fields (neither multiplica-

tively or in derivatives), and the mean field does not depend

on these fields either. Hence, we find a scale-invariant

power spectrum even for density perturbations, with

amplitude still scaling as 1=N (a generic property of

macroscopic observables for many-particle states).

Scale invariance will be broken by two types of correc-

tions: first, as for volume perturbations, departures from

exact homogeneity in the mean field lead to non-scale-

invariant terms. The details will be different for density

perturbations, since the rod fields will also acquire a

nonzero background energy density and hence contribute

to the expressions for perturbations; for instance, we

find

hδπiϕðϕ0; kiÞδπjϕðϕ00; k0iÞi

¼ N

4
kikjð2πÞ3δ3ðki þ k0iÞδðϕ0 − ϕ00Þ ð32Þ

at leading order, which breaks scale invariance.

More importantly, we have ignored gradient energy in

the scalar fields in these calculations, which will be

expressed in terms of more complicated observables that
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each involve more than one scalar field. For the contribu-

tion in gradient energy, we would in general not expect

scale invariance even for a homogeneous mean field. The

assumption of subdominance for the gradient energy with

respect to kinetic energy is what one would expect in a

near-homogeneous geometry, and it is thus reasonable in a

realistic cosmological scenario. In other contexts, other

terms may dominate over the kinetic energy as well,

e.g., in slow-roll inflation; such additional terms are

however not necessary, it seems, in our context. More

work is certainly needed to verify whether our assumptions

are dynamically justified, even in presence of more realistic

matter fields.

The possibility of deviations from scale invariance for

gradient energy is consistent with the fact that in classical

cosmology volume and density perturbations are not

necessarily proportional to one another. Indeed, any such

statement depends on the chosen gauge. Consider for

instance the gauge-invariant “curvature perturbation on

uniform-density hypersurfaces” (see e.g., [22])

−ζ ¼ ΨþH

_ρ
δρ; ð33Þ

defined in terms of a metric perturbation Ψ, the Hubble

parameter H, background matter density ρ and density

perturbation δρ. One can choose a gauge in which δρ ¼ 0

and Ψ is proportional to the volume perturbation, or a

different gauge in which Ψ ¼ 0. Thus, the gauge-invariant

quantity ζ can be proportional either to volume or to density

perturbations, but this is not true in general.

In our formalism, due to the introduction of reference

scalar matter fields which are used as relational coordinates,

there is no gauge freedom and gauge choices that make

certain quantities vanish are not possible (instead, our rela-

tional coordinates define a harmonic gauge [23]). We should

then focus on density perturbations, and as we saw, if

gradient energy contributes to density perturbations, they

in general depart from the scale invariance found for volume

perturbations. For subdominant gradient energy and a mean

field close to homogeneity, however, we also find scale-

invariant density perturbations, and the general result is the

same: in the regime we considered, quantum gravity natu-

rally produces an approximately scale-invariant spectrum

also for density perturbations, with small amplitudes.

The detailed relation between our gauge-invariant quan-

tities and the perturbation variables normally used in

cosmology will need to be worked out to have a full

comparison with observations; we leave this to future work.

This detailed comparison can be based on previous work,

e.g., in the canonical gravity context [24].

VII. DISCUSSION

By introducing in the GFT formalism scalar field d.o.f.

that can be used as physical reference frames, we could

extend the mean-field approximation for GFT condensates

beyond homogeneity. This approximation has already

been shown to provide an effective cosmological dynamics

in which not only a semiclassical large Friedmann universe

is reproduced under generic conditions, but also the

cosmological singularity is replaced by a quantum

bounce, followed by an accelerated phase of expansion

of quantum gravity origin. We then considered the typical

setup of early universe cosmology within this full quantum

gravity framework: we computed the power spectrum of

quantum fluctuations of the local volume in a homo-

geneous background geometry perturbed by small inho-

mogeneities. We found that this is approximately scale

invariant, with a small amplitude that decreases as the

volume of the Universe grows. This confirms the potential

of the GFT condensate cosmology framework to provide a

quantum gravitational foundation for early universe

cosmology.

While we initially showed how volume perturbations

arise as quantum fluctuations in a GFT condensate, we

then also saw that similar statements can be made for

density perturbations, which are more directly related to

observation. In particular, for perturbations in the kinetic

energy of the scalar fields, the same general conclusions

follow: for the mean field (23), quantum fluctuations of

such observables have scale-invariant power spectrum at

leading order, as in Eq. (24). This is in general not true

for gradient (potential) energy, and hence fluctuations

in the total density will in general not be scale invariant

as soon as gradient energy contributes non-negligibly

to the total energy density. The second main property

we identified, a small amplitude scaling inversely with

the particle number, is more generic and extends to other

observables.

As we have stressed, precise details of the power

spectrum depend on identifying a particular choice of

mean field as a solution to the condensate hydrodynamics.

In addition, obtaining classical inhomogeneities from

quantum fluctuations requires studying the propagation,

amplification and “freeze-out” of the initial quantum

fluctuations, which all again depend on the dynamics.

The details of this transition from the initial quantum

fluctuations in the deep quantum gravity regime to classical

observable inhomogeneities will be the focus of future

work. It is however a remarkable result that generic

properties of the spectrum of observables of cosmological

interest can be identified from the general formalism of

cosmology as GFT hydrodynamics alone, as we have

demonstrated.
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