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Abstract—A hierarchical stochastic macromodeling approach
is proposed for the efficient variability analysis of complex nonlin-
ear electronic systems. A combination of the Transfer Function
Trajectory and Polynomial Chaos methods is used to generate
stochastic macromodels. In order to reduce the computational
complexity of the model generation when the number of stochastic
variables increases, a hierarchical system decomposition is used.
Pertinent numerical results validate the proposed methodology.

I. INTRODUCTION

The increasing complexity, density and bandwidth of mod-
ern electronic circuits require an efficient and accurate mod-
eling of the effects of geometrical or electrical parameter
variability on the system performances [1], [2]. The variability
has several sources, ranging from the manufacturing process to
temperature fluctuations and aging, and requires the electrical
response to be addressed from a statistical standpoint in order
to properly characterize signal integrity issues. The Monte-
Carlo (MC) method is the standard for the variability analysis
due to its accuracy and robustness. A main drawback of the
MC method is the required high number of simulations to
achieve a suitable level of accuracy. Since the simulations of
complex high-speed circuits are often computationally expen-
sive, the MC approach becomes very demanding in terms of
both memory and computational time.

Polynomial Chaos (PC) methods [3]-[8] represent a reli-
able alternative to MC-based techniques for variability anal-
ysis. In PC-based approaches, a stochastic process is repre-
sented as a series of orthogonal polynomials with suitable
coefficients. The PC methodology has been extensively applied
to the variability analysis of linear systems, such as lumped
elements circuits [9], [10], multiconductor transmission lines
[11]-[13] and generic linear multiport systems [14]. Also, the
PC methodology has been proposed for the variability analysis

of nonlinear electronic circuits [15]-[18]. Recently in [18],
a method has been proposed for the variability analysis of
complex nonlinear systems based on the calculation of the
PC expansion of Transfer Function Trajectory (TFT) [19]-
[21] models. This method can be applied to a broad range
of nonlinear circuits thanks to the modeling power of the TFT
and it offers the efficiency and accuracy of the PC approach
in performing the variability analysis. However, the generation
of a PC-TFT model may become computationally expensive
when the number of stochastic variables of interest increases.

Therefore, in order to reduce the computational cost needed
to generate PC-TFT models in the case of a high number of
stochastic variables, a hierarchical system decomposition is
proposed in this paper. Subdividing a system into subsystems
and generating PC-TFT models of the subsystems instead
of the complete system leads to decrease the complexity
of the model generation phase. This paper is structured as
follows. First, an overview of the PC-TFT approach and the
related modeling complexity is given in Section II. A relevant
numerical example is presented in Section III to validate the
proposed technique. Conclusions are given in Section IV.

II. STOCHASTIC MACROMODELING OF NONLINEAR
SYSTEMS

The goal of the stochastic macromodeling technique [18]
is to express the time-domain variability of a nonlinear system
which depends on a vector of normalized random variables &
via the PC expansion [3]-[8] of the corresponding TFT model
[19]-[21] implemented as a multi-channel Wiener system with
a linear time-invariant block at the input and a nonlinear
readout map. The resulting model is called PC-TFT model



and can be expressed as [18]:
Z(t) = AZ(t)+ Bu(t)
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where the elements ;(&) for i = 0,..., M, are polynomial
functions of the random variables &, referred as basis functions
in the PC theory. In particular, the choice of the basis functions
depends on the the distribution of the random variables in the
vector £ and, if such variables are independent, it is possible to
express the number M +1 of basis functions in (1) as a function
of the number Z of random variables and the maximum degree
P of the polynomials considered as [4]:
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Thanks to the properties of the PC expansion, it is possible
to prove that (1) can be rewritten as M +1 independent systems
of ordinary differential equations (ODEs) [18]:
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where the elements g, (t) are the coefficients of the PC
expansion of the system output in the form:

Y(6,E) =D i (t)wi(). )
1=0

The main advantage of the PC model (4) is the accurate and
efficient representation of the system variability in the time-
domain. Indeed, stochastic moments like the mean p, and
variance o2 of the system output can be expressed via simple
analytical formulas [4]:
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where the symbol < - > represents the scalar product operator
and the elements < ¢;(£),¢;(§) > for i = 0,..., M can
be computed solving (often analytically) suitable multidimen-
sional integrals [3]-[8]. Apart from all moments, also complex
stochastic functions, such as the probability density function
(PDF) and the cumulative density function (CDF), can be
computed following standard analytical formulas or numerical
schemes [6].

The PC-TFT technique [18] combines the modeling power
of the TFT modeling approach with the accurate and efficient
representation of the system variability given by the PC
expansion resulting in a robust, flexible and powerful modeling
technique. It is worth to notice that the stability of the PC-
TFT model in (1), fundamental property for time-domain
simulations, can be guaranteed. Furthermore, any nonlinear
system that can be described by a quasi-linear parameter-
varying representation [22] can be modeled with the proposed
PC-TFT technique, making it applicable to a broad range of
nonlinear systems, including strongly nonlinear ones. Finally,
the M + 1 systems of equations (3) are independent: it is
possible to solve them in parallel adopting standard numerical

methods (e.g. Backward Euler). Note that, it is possible to
use numerical methods that minimize the total number of time
samples needed by using a non-uniform sampling strategy in
the time domain.

However, the computational cost to build a PC-TFT model
is strongly dependent on the number of basis function M +
1 used in (1). In particular, the calculation of the PC-TFT
model (1) is a two-step process: first, a discrete number of
TFT models with common poles is computed, corresponding
to a discrete set of samples of the random variables £ and of the
state space Z(t), indicated as [€, ]/, and [Z;]7_,, respectively.
Next, the PC-TFT model in the form (1) is obtained using the
linear regression method [4]. It is important to notice that,
the initial number of samples K of the random variables £ is
chosen according to:
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Hence, the number of initial samples in the stochastic space
K depends heavily on the number of random variables Z
considered and the maximum degree of the polynomials P
used in (1). Consequently, the efficiency of a PC-TFT model
can be greatly undermined if the computational cost to generate
such a model becomes too high.

K~2(M+1)=2 ™

A hierarchical system decomposition is proposed in this
paper to limit the computational complexity needed to generate
a PC-TFT model when the number of stochastic variables
increases. The main idea is to exploit the possibility of
subdividing a system into subsystems and generate PC-TFT
models of the subsystems instead of the complete system.

III. NUMERICAL EXAMPLE

The proposed PC-TFT model is demonstrated by hierarchi-
cally modeling a flash ADC circuit in the 73750 technology,
see Fig. 1. Here, the comparator subblock was identified as
a repetitive structure and it is modeled using the PC-TFT
technique. The analog input signal and the reference voltage
at the input of the comparator are the deterministic inputs to
the model. The stochastic variables are selected based upon
sensitivity screening of each stochastic variable occurring in
the comparator towards the output performance. This proce-
dure yields two dominant stochastic variables (Z = 2) that
need to be included in the model for this technology, namely
the variation of the threshold voltages of the input transistors.
These stochastic variations introduce an input-referred offset
to the comparator, which affects the effective number of bits
(ENOB) of the overall ADC circuit [23]. It is assumed that
the stochastic variables have a normal distribution, which is
verified experimentally.

A PC model of the output mapping defined by C(-), D(+)
is computed using a fifth-order polynomial chaos expansion
(P = b5 for accuracy reasons). Hence, the corresponding
number of basis functions in the PC-TFT model is M +1 = 21,
according to (2), which leads to a minimum number of samples
in the stochastic space equal to K ~ 2(M+1) = 42,
according to (7). A Wiener PC-TFT model was computed
using a 7T—by—7 regular grid of the two stochastic variables
£ in a range between +40, so K = 49 SPICE simulations
are required for each of the reference voltages. From the



MNA data, 49 piecewise TFT models are computed. The
computation of the 49 TFT models took 529s including the
training simulations. The computation of the PC model of the
output mapping C;(-), D;(-) in (3) took 0.347s and the PC
model (4) of the comparator output 7; took 0.655s.

The time-domain response of the comparator subblock
in SPICE and of the PC-TFT model are given in Fig. 2
for 40001 transient simulations with MC sampling of the
process variations that are included in the technology data of
the foundry. The models were then simulated in MATLAB
and compared with circuit-level SPICE. All calculations were
performed on a 4GHz dual quad-core CPU with 12GB RAM.
It can be seen that the model and the original circuit are
almost indistinguishable. For the sake of clarity, the difference
between both sets of waveforms is also plotted. The maximum
difference never exceeds 0.1V. The evaluation of the 40001
MC samples took 4210s in SPICE and only 0.532s using the
PC-TFT technique. Hence, a simulation speedup of 7913X
was achieved for the comparator subblock. More importantly,
the PC-TFT model provides an analytical expression to com-
pute stochastic moments, such as the mean . and the variance
o2 (see equations (5) and (6)) of the output waveforms. Hence,
the mean and the standard deviation of the waveform at each
time point can be calculated analytically with the PC-TFT
model, which only required an additional 0.065s to compute.

The effectiveness of this approach is illustrated by com-
paring the mean p and the range p = o of the output of the
comparator using both the 40001 Monte-Carlo simulations in
SPICE and using the corresponding analytical expressions of
the PC-TFT model. From Fig. 3 it is clear that the analytical
expression is very accurate without the need for a large set
of Monte-Carlo samples; only K = 49 grid samples are
required for computing the PC-TFT model. Next, a 3-bit ADC
system is simulated by stacking the comparators as in Fig.
1. Of course, it is possible to increase the complexity of the
system by including more values of the reference voltage at
the expense of model computation cost. The accuracy of an
ADC is typically described by the ENOB, which is in turn
determined by the integral and differential nonlinearity of the
converter (INL and DNL respectively) [23]:

Vin,min - ‘/in,max
(®)
max (2 - INL,DNL)

ENOB = log,

The cumulative probability plot of the ENOB of the system
is given in Fig. 4 for the original SPICE simulation and
the PC-TFT model for 40001 MC samples. The evaluation
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Fig. 1.  Schematic representation of a flash ADC and of the comparator
building block.
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Fig. 2. Top: Time-domain waveforms of the comparator subblock modeled

with SPICE and the TFT model for 4 different reference voltages and 1000
Monte-Carlo samples. Bottom: the difference or error between the PC-TFT
model and the SPICE simulation.
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Fig. 3. The mean p and the range 4o of the output voltage of a comparator
subblock. The black lines are computed using 40001 Monte-Carlo simulations
in SPICE. The red lines are computed analytically from the PC-TFT model.

time in SPICE took 8509s while the stochastic moments of
the PC-TFT model were readily available in analytical form.
The evaluation of the four PC-TFT models in the 40001 MC
samples only took 2.156s, which corresponds to a simulation
speedup of 3946 X over SPICE.

The results of the PC-TFT model presented here agree
very well with the results that are predicted by SPICE for
the subblock. Also, a good correspondence between the hier-
archical model and the full system simulations is observed.
It is important to notice that the adoption of a hierarchical
modeling approach greatly improves the efficiency of the
proposed method. Indeed, the behaviour of the 3-bit ADC
system in Fig. 1 depends on 8 independent random variables,
namely the treshold voltages of each comparator subblock.
Using again a fifth-order PC expansion (P=5), the computation
of the corresponding PC-TFT model (1) would require M+1=
1287 basis functions, according to (2), leading to a number of
initial TFT models K = 2574, according to (7). The proposed
hierarchical appraoch greatly reduces the modeling complexity,
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Fig. 4. The effective number of bits (ENOB) for 40001 Monte-Carlo
samples evaluated with the proposed PC-TFT model (red dashed line) and
1000 samples evaluated with a full SPICE simulation (black). The ENOB
CDF represents the static accuracy of the converter under the influence of
process variations.

since it requires only the computation of K=49 initial TFT
models corresponding to M+1=21 basis functions for each
comparator subblock.

IV. CONCLUSIONS

This paper has presented a hierarchical technique for the
efficient variability analysis of complex nonlinear systems.
A nonlinear system is decomposed into a set of subsystems
to reduce the computational complexity needed to generate
stochastic macromodels when the number of stochastic vari-
ables increases. The stochastic macromodel for each subsystem
is based on the use of a PC expansion applied to the TFT
description of the subsystem. Pertinent numerical results have
validated the accuracy and efficiency of the proposed method.
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