158 research outputs found

    An algebraic turbulence model for three-dimensional viscous flows

    Get PDF
    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number

    Three-dimensional Navier-Stokes analysis and redesign of an imbedded bellmouth nozzle in a turbine cascade inlet section

    Get PDF
    Verification of proposed turbopump blading performance will involve evaluation of candidate blades in cascade test facilities. It is necessary to be able to predict the flow fields within these cascades for the results to be applicable to actual engine environments. This work presents the results of a study to predict the flow field for the NASA Lewis Transonic Turbine Blade Cascade Facility, which is similar to those used to evaluate rocket propulsion turbines. A pitchwise nonuniform total pressure distribution was observed at the blade row leading edge plane. A CFD analysis was used to show that the cause of the flow nonuniformity was a pair of vortices that originated in an embedded bellmouth inlet. Further CFD analysis was used to verify that a redesigned inlet section resulted in a flow with acceptable uniformity. A computational analysis was chosen because physical accessibility to the inlet section was limited, and because a computational approach also allows one to examine design changes cheaper and more quickly than an experimental approach would. The PARC code, a general purpose, three-dimensional, Navier-Stokes code with multiblock solution capability, was chosen for the present study. Results are presented detailing the computational requirements needed to accurately predict flows of this nature. Calculations of the original geometry showed total pressure loss regions consistent in strength and in location to experimental measurements. An examination of the results shows that the distortions are caused by a pair of vortices that originate as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry which eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth eliminates the troublesome pair of vortices, resulting in a flow with much greater pitchwise uniformity

    Resolution of Diabetes Insipidus After Pyeloplasty: A Case Report and Review of the Literature

    Get PDF
    Nephrogenic diabetes insipidus (NDI), a rare cause of polyuria and polydipsia in children, is usually managed with medications and careful monitoring of water intake. We present a child who was incidentally found to have right hydronephrosis secondary to ureteropelvic junction obstruction, and was subsequently also diagnosed with NDI. After being medically managed, he underwent open right pyeloplasty. His polydipsia abated within 1 month of surgery, and he has done well off of medications since that time. NDI resolution after correction of obstructive uropathy in adults has been reported, but this represents a novel case in pediatrics

    Three-dimensional Navier-Stokes analysis and redesign of an imbedded bellmouth nozzle in a turbine cascade inlet section

    Get PDF
    Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow non-uniformity. A three-dimensional, Navier-Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow non-uniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier-Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry which eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow non-uniformity has indeed been eliminated

    Endwall Heat Transfer Measurements in a Transonic Turbine Cascade

    Get PDF
    Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136' of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for computational fluid dynamics (CFD) code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique

    Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    Get PDF
    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification

    Uncertainty Evaluation of Computational Model Used to Support the Integrated Powerhead Demonstration Project

    Get PDF
    NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models

    Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding

    Get PDF
    NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit
    • …
    corecore