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ABSTRACT

Three-dimensional flow field measurements are pre-

sented for a large scale transonic turbine blade cascade.
Flow field total pressures and pitch and yaw flow angles

were measured at an inlet Reynolds number of 1.0 x l0 s

and at an isentropic exit Mach number of 1.3 in a low
turbulence environment. Flow field data was obtained

on five pitchwise/spanwise measurement planes, two

upstream and three downstream of the cascade, each

covering three blade pitches. Three-hole boundary layer

probes and five-hole pitch/yaw probes were used to ob-
tain data at over 1200 locations in each of the measure-

ment planes. Blade and endwall static pressures were
also measured at an inlet Reynolds number of 0.5 x 106

and at an isentropic exit Mach number of 1.0. Tests
were conducted in a linear cascade at the NASA Lewis

Transonic Turbine Blade Cascade Facility. The test ar-

ticle was a turbine rotor with 136 ° of turning and an

axial chord of 12.7 cm. The flow field in the cascade

is highly three-dimensional as a result of thick bound-

ary layers at the test section inlet and because of the

high degree of flow turning. The large scale allowed

for very detailed measurements of both flow field and
surface phenomena. The intent of the work is to pro-

vide benchmark quality data for CFD code and model
verification.
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INTRODUCTION

There is a continuing need to provide benchmark

quality experimental data for the verification of turbo-

machinery CFD analyses. Improvements in computa-
tional speeds and storage availability allow CFD anal-

yses to resolve the flow features in increasingly greater
detail. To verify the computational analyses, as well as

to provide data for improved modeling of the flow fea-

tures, experiments which resolve the flow field in fine
detail are needed. To help satisfy this need, a Tran-

sonic Turbine Blade Cascade was designed and built

at the NASA-Lewis Research Center. The purpose of

this facility is to obtain detailed aerodynamic and heat
transfer measurements for turbomachinery binding that

is characteristic of advanced turbomachinery applica-

tions. The facility is configured to provide detailed

aerodynamic and heat transfer data for engine-relevant

geometries, Reynolds numbers, and Mach numbers.
This facility is a linear cascade. It was recognized that a
linear cascade cannot simulate rotation effects, and that

the chosen design does not allow for tip clearance ef-

fects. Nonetheless, a linear cascade was chosen over an
annular cascade for a number of reasons. The primary

reason was to obtain detailed measurements in a large

scale facility at transonic flow conditions. The physi-

cal size of the blading was determined by the amount
of air that could be moved at transonic speed through

the cascade. An annular cascade of engine-typical hub-

to-shroud and aspect ratios would require several times
more flow rate than a linear cascade for blades of the

same chord length. Also, a linear cascade provides eas-
ier access for instrumentation than an annular cascade.

From a computational aspect, a linear geometry mini-
mizes the effects of the three-dimensional mesh on the

CFD solution, thus giving a clearer analysis of the ac-
tual flow solver. The initial configuration for the cas-

cade is a rotor geometry.

Several researchers have reported results of aero-

dynamic measurements for rotor geometries tested in
linear cascades. Graham and Kost (1979) showed re-

sults for two turbine rotor geometries tested at tran-
sonic conditions. Kiock et al. (1986) evaluated the

differences in rotor performance seen when the same

rotor geometry was tested in four different wind tun-

nels at transonic conditions. Mee et al. (1992a) and

Mee et al. (1992b) presented measurements for a rotor
linear cascade tested" at transonic conditions in a short

duration blowdown facility. Mee et al. (1992a) focuses

on the measurement of midspan loss mechanisms while

Mee et al. (1992b) focuses on detailed blade bound-
ary layer measurements, primarily at midspan. In ad-
dition to measurements made at transonic flow con-

ditions, several researchers presented results for rotor

geometries tested in low speed linear cascades. Gen-

erally, these results were obtained in cascades with

blading significantly larger than that used in the tran-

sonic tests. Langston et al. (1977), Gregory-Smith

and Graves (1983), Marchal and Sieverding (1977),

Yamamoto (1987a,b), Moustapha et al. (1985), and

Gregory-Smith et al. (1988) presented detailed results
of aerodynamic measurements for rotor blades tested in

linear cascades at relatively low Mach numbers.

The test configuration for the present study was a
linear cascade of ten whole blades and two shaped end-

blades, giving eleven passages. Each blade had an axial

chord of 12.7 cm (5.00 in.). The facility was designed to
have a maximum test section total pressure of approxi-

mately one atmosphere. Transonic flow conditions were

achieved by passing the air from the test section to a low

pressure exhaust system. The combination of low total

pressures and large-size blading allows the facility to

simulate engine-relevant Reynolds and Mach numbers
using test geometries significantly larger than found in

actual engines.

The blade tested in the cascade is of constant cross

section so that the geometry of the cascade is two-
dimensional. Verification data for three-dimensional

CFD analyses was desired. The three dimensionality

of the flow field was achieved by not bleeding off the

endwall boundary layers. It will be shown that, when
the endwall boundary layers are not bled off, the span-

wise variation of surface pressures around the rotor was

of the same order as the spanwise variation in surface

pressures experienced in an actual engine.

The objective of the work presented in this paper
was to obtain aerodynamic measurement data. The

data was intended to be of benchmark quality and to be

of sufficient detail so as to be useful for validating CFD

analyses. Measurements presented here include blade

and endwaU static pressures, flow-field measurements

of total pressure, along with pitch and yaw flow angles.

Pitchwise integrated averages of all of these quantities

will be presented as well. Flow field measurements were

made on two survey planes upstream and three survey

planes downstream of the blade row. All of the flow-
field measurements were obtained with either a 3-hole

boundary-layer probe or a 5-hole pitch/yaw probe. A

description of the probes that were used and their cali-
brations are also included. The aerodynamic measure-

ments described here are intended to complement the

endwail heat transfer measurements that were made in

the same facility and described by Giel et al. (1996).



All of the flow field data presented here was ob-

tained at a nominal inlet Reynolds number of 1.0 x 106

and at a nominal exit Math number of 1.3. Blade and

endwall static pressure data were also obtained at a

Reynolds number of of 0.5 x 10 6 and at an exit Math

number of 1.0. Upstream of the blade row, the inlet
freestream turbulence intensity level was approximately

0.25%.

DESCRIPTION OF FACILITY

An initial description of the facility was given by

Verhoff et al. (1992). Since that time, an inlet section
analysis and redesign (Giel et al., 1994) was performed

to improve inlet flow pitchwise uniformity. Figure 1
shows an overall view of the facility with the new inlet

section in place. High pressure air at ambient temper-

ature is supplied to the facility. The air is throttled to

a maximum pressure of 120 kPa (17 psia) in the test
section. The air passes through the blade row and is

then discharged into an exhaust header maintained at
a nominal pressure of 15.9 kPa (2.3 psia). Valves be-
tween the test section and the exhaust header are ad-

justed to give the desired static-to-inlet total pressure
ratio at the blade row exit. As seen in Fig. 1, the test

section is mounted on a large disk. This disk can be

rotated to give a range of incidences. All of the re-
sults described here were obtained at the design inlet

flow angle of 63.6 degrees. This inlet angle gave a flow
turning of about 136 degrees. Upstream inlet boards
were installed as described in Giel et al. (1994), but to

prevent shock reflections in the downstream section, no
exit tailboards were used. A highly three-dimensional

flow field was obtained in the blade passages by allow-

ing boundary layers to develop in the long inlet section
upstream of the cascade. Aerodynamic probe data and

blade loading data both verify the existence of strongly

three-dimensional passage flow.

The blade shape used in these tests, while generic

in nature, was designed to simulate the flow character-

istics of a high specific work rotor. Pertinent details
of the blade and of the cascade are given in Table 1.

A detailed view of the test section is shown in Fig. 2.

The figure shows the two upstream measurement planes

(Stations 0 and 1) and the three downstream measure-

ment planes (Stations 2, 3, and 4). These measurement

planes extend from the endwall, z = 0, to just above

midspan, z/s = 0.54. Each of the passages is numbered
in the figure, and Passage 5 was considered to be the

primary test passage.

Inlet freestream turbulence intensity measurements

were made with a constant-temperature hot wire

anemometer traversed in Station 0 (x/Cx = -1.000,

see Fig. 2). The measurements showed a pitchwise uni-
form freestream value of Tu equal to 0.25% at Rec= =

1.0 × 106 and 0.50% at Re¢= = 0.5 x 106.

Fig. 1 Overall view of Transonic Turbine
Blade Cascade test section

Table 1 Blade and cascade parameters

and dimensions

Geometric parameter Value
axial chord

pitch

span

true chord

stagger angle
throat diameter

throat area: 1 passage

leading edge diameter

trailing edge diameter

12.70 cm (5.000 inches)
13.00 cm (5.119 inches)

15.24 cm (6.000 inches)

18.42 cm (7.250 inches)
41.540

3.358 cm (1.393 inches)

53.94 cm 2 ( 8.360 in s)

2.657 cm (1.046 inches)

0.518 cm (0.204 inches)

Flow parameter Value

Inlet Rec=

Exit Rec_
Inlet Mzs

Exit Mzs

Inlet _!
Inlet flow angle

Design flow turning

0.977 + 0.028 x lO s

1.843 + 0.060 x lO s

0.383 + 0.0006

1.321 :k 0.003

3.2 cm (1.2 inch)
63.60

136 °

(all repeatabilities based on 95_ confidence limits
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Fig. 2 Test section geometry and

measurement plane locations

DESCRIPTION OF INSTRUMENTATION

Static Pressure Measurements Endwall surface

static pressure data was obtained with an endwall
instrumented with approximately 550 pressure taps.

Pressure measurement taps were located in all passages.

The test passage and two adjacent passages were instru-

mented with 87 pressure taps per passage. The taps

extended axially from z/Cx = -0.4 to x/C= = 2.1 and

were arranged in 21 rows with either 4 or 5 taps per

row. Decreasingly fewer taps were located in passages

away from the test passage. The locations of the pres-

sure taps in the three measurement passages will be

shown in contour plots of endwall static pressure. Data
from the three fully-instrumented passages was used to

provide a periodicity check.

The two blades that formed Passage 5 were instru-

mented with static pressure taps to measure blade load-

ing. The taps were located on 9 spanwise planes ex-

tending over the entire span of the blade. On both

blades, pressure taps were located completely around

the leading and trailing edge circles in order to verify

periodicity. Also, spanwise symmetry was verified by

comparing measurements on planes that were symmet-

ric about midspan.

All pressures were measured with an electroni-

cally scanned strain gauge measurement system. The

100 kPa (15 psid) strain gauge transducers were typ-

ically calibrated every 20 minutes against a thermally

isolated digiquartz calibration unit. Barometric pres-
sure was used as the reference pressure. Rapid changes

in the barometric pressure required more frequent cal-

ibrations. The repeatability of the pressure measure-

ment system was 0.05%. This was determined by com-

paring the output of 26 transducers against a fixed mid-

range pressure level.

The blade and endwall static pressure measure-

ments were made with all measurement probes removed

from the test section. To measure the inlet total pres-

sure, two Kiel probes were located at the exit of the 8:1

upstream contraction (see Fig. 1), and one Kiel probe

was located approximately ? C= upstream of the blades,

but away from the measurement passages. These three

probes agreed with each other to within system repeata-
bility. To obtain the blade and endwall static pres-

sure data, the pressure measurement system was pro-

grammed such that one reading represented 15 scans

at a rate of I scan per second. Ten such readings were

taken over approximately 10 minutes and were aver-

aged.

Flow-Field Probe Measurements

Photographs and dimensions of the 3-hole boundary-

layerprobe and ofthe 5-holepitch-yaw probe are shown

in Fig. 3. The probes were 45° forward-facingpyra-

mid probes and were nominally identicalexcept forthe

measurement heads. Note that the probes were angled

such that theirmeasurement heads were locatedalong

the axisof the probe shaft.This was done sothat when

the probe was rotated,the locationof the probe head

would not change. The portion of the probe that re-
tractedintothe actuatorhad a circularcross-sectionof

diameter 6.4mm (0.25in.).The primary portionofthe

probe exposed to the flow had a diamond cross-section

of dimensions 3.6mmx 6.4 mm (0.14in. x 0.25in.).

0.25

(.060 in.)

Fig. 3 Aerodynamic measurement probes



The reduction of data acquisition time was of pri-

mary concern in the facility. The time constants, r, of

the probes were measured to determine the wait time

required when a probe was moved. The time constants

were measured by applying a step change in pressure to

the probes while they were connected to the transducers
exactly as they were for the actual measurements. The

time constants for the probes were: _'s-hoze -- 0.82 sec.,

and _'5-ho_e -- 0.55 sec. The longer time constant of the

3-hole probe was caused by its smaller port openings.
Wait times of five time constants were used to achieve

greater than 99% recovery. Each probe port was mea-

sured with 3 separate transducers, and each port was
scanned 5 times at a rate of 1 scan per second.

The probe was positioned by a remotely operated,

computer controlled actuator. A flexible steel tape
was used to bridge the gap formed by the pitchwise
slot. A hole was drilled in the tape for the probe to

pass through, and spring-loaded take-up reels on each

end provided smooth operation. The step in the end-

wall caused by the pitchwise slot was less than 1 mm

in height. The pitchwise extent of travel was shown

in Fig. 2. Because the probe shaft was angled, the
spanwise extent of travel was limited from z = 0 to

z = 0.54 x span. The actuator system had the capabil-

ity of automatically hulling the probe by adjusting the

angle in order to drive P3 - P2 to zero. However, this
capability was not used, since the time required to null

the probe was much greater than five time constants.
Rather than nulling the probes, a pitch-yaw calibration

technique was used."

Another important feature of the probe actuator

system was an electrical circuit that was used to de-
tect the point at which the 3-hole boundary-layer probe

touched the aluminum wall. Figure 3 shows a slight

(_ 3°) bend in the 3-hole probe at the measurement
head tip. This bend allowed the tip to touch the wall

first and flex slightly without damage. Touching the
wall with the tip completed a circuit and stopped the

actuator. This technique gave a reproducibility in the

wall location of approximately -4-0.08 mm (+0.003 in.).

When the 3-hole probe touched the wall, the measure-
ment location was taken as half the probe thickness.

This gave a location of 0.13 mm (0.005 in.) from the
endwall. In order to allow the touch circuit to work, the

probe was electrically isolated from the actuator using

heat-shrinkable tubing.

PROBE CALIBRATION TECHNIQUE

The probes were calibrated in a subsonic, free-

jet facility and in the exits of enclosed, supersonic,

converging-diverging nozzles. The following pressure

coefficients were defined, generally following the work

of Reichert and Wendt (1994) and of Dominy and Hod-

son (1993):

pitch angle:

yaw angle:
total pressure:

static pressure:
Mach number:

cp,o = (P2 - P3)l(P1- Po)
cp, = (Ps - P4)l(P1 - Po)
c,,,1 = (P' - P1)l(P - Po)
Cp,o = (Po - P)I(PI - Po)

Cp,M= Po/P 

Po is the average pressure of the outer probe ports, i.e.,

Po -- (P2 +/'3 -b P4 + P5)/4 for the 5-hole probe, and

Po = (P_ -.}-P3)/2 for the 3-hole probe.

The calibration procedures for the 5-hole and the

3-hole probes were similar. The yaw angle,/_, and its

corresponding coefficients did not enter into the cali-
bration of the 3-hole probe. In the calibration facility,

the total and static pressures, P' and P, were measured

along with the probe pressures P1 through Ps. These
measurements were made as the probe was traversed

over a range of angles in increments of 5°. The traverse

range was +25 o in a, and +20 ° in/_.

The first step in the calibration procedure was the

determination of coefficient dependencies on flow an-

gles. The average outer port pressure, Po, was first cal-
culated in order to calculate the pressure coefficients

Cv,a and Cv, _. A least-squares regression was per-
formed in order to fit the flow angles a and/_, to fourth-

order polynomials of Cp,a and Cp,_. Probe calibration

symmetry was not assumed, so 15 unknown coefficients
needed to be determined for each calibrated quantity.

The regression coefficients were estimated by solving

the least-squares system of equations. A sample of some

input calibration data and the corresponding output
calibration functions are shown graphically in Fig. 4.

A similar procedure was undertaken to calibrate

for total and static pressures. The pressure coefficients

Cv,1 and Cp,o were fit as fourth-order polynomials in a
and _. For the blade row surveys, the probe measure-

ments were used to calculate Cp,a and Cp,_. The local

flow angles, c_ and fl were then determined from their

calibration regressions. The two flow angles were then

used to determine Cv,1 and Cp,o. With these values
known, the local total and static pressures were easily
determined from their definitions.

Relatively large uncertainties were related to the

static pressure coefficient, Cv,o, and its calibration, so

flow field static pressure measurements were the least

reliable and will not be presented here. Some sample in-

put calibration data and the corresponding output cal-
ibration functions for total pressure are shown graph-



ically in Fig. 5. The effects on total pressure of the
bow shock in front of the probe were small because of

the relatively low supersonic Mach numbers involved
with these measurements, but a normal shock correc-

tion was still made. Probe calibrations were performed

at Mach numbers ranging from 0.2 to 1.6. The pressure

coefficient Cp,M, determined only from probe pressure

port measurements, when corrected for flow angle, was
found to correlate well with Mach number. Thus, a rea-

sonable estimate of the Mach number was determined

from Cv,M, a, and ft.A normal shock correctioncould

thereforebe made formeasurements with M > 1.0.

2-

contours of angles a and _;

solidline = calibrationinput

dashed line= calibrationoutput

_20o _10o" 0° + 10o a =

J:i', ' i
; ..... i

-i b i
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20

-_ "'"'_1_*_ °
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i ....--_5=-I0 °
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Fig. 4 Sample five-hole probe flow

angle calibrations

Readings from a 5-holeprobe will be biased near

walls because the largegradient in P_ acrossthe end-

wall boundary layerismisinterpretedby the probe as a

yaw anglein the flow,thus precludinguse ofthe 5-hole

probe near walls. Three-hole probe calibrationdata

was obtained at severalyaw angles to determine the

range over which the totalpressure and c_calibrations

were insensitiveto/_.The calibrationdata showed that

the geometry ofthe 3-holeprobe caused itstotalpres-

sure and a calibrationsto be independent of the yaw

angle,8, for -50 __ /3 __ -{-15°, but dependent on /_

outsidethisrange. Five-holeprobe flow fieldmeasure-

ments showed that localyaw anglescould be lessthan

-5 ° at distancesof z/s __0.04 away from the endwall.

Therefore,the use ofthe 3-holeprobe islegitimateonly

inthisnear-endwallTegion.

Probe calibrations were verified in the cascade by

turning the probe at different angles to the flow while
maintaining the same spatial location. Deviations in

measured flow angles for both a and/_ were less than
0.50 . Measured total pressure variations were less than

1.5% of the inlet dynamic pressure. Overall, the es-

timated uncertainty in flow angle measurements was

±1.50 , while the estimated uncertainty in total pres-
sure coefficient was +1.7% at the upstream, subsonic

measurement planes and +2.1% at the downstream, su-

personic measurement planes.
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Fig. 5 Sample five-hole probe total
pressure calibration

MEASUREMENT RESULTS

Static Pressure Measurements Figure 6 shows end-

wall static pressure distributions at high and low

Reynolds numbers and at sonic and supersonic exit

Ma£h numbers. The locations of the pressure taps

appear in the figure along with the contours. As

mentioned earlier, the figure shows the strong three-
dimensionality of the flow - particularly evidenced by

the fact that the P/P_n = 0.8 contour line has a

peak near mid-passage that is caused by the horse-

shoe/passage vortex. Also to be noticed from the figure
is that the Reynolds number has almost no effect on the

pressure distribution, and that the exit Mach number
affects only the portion of the endwall downstream of
the blade throat• Both of these features were to be ex-

pected. Figure 6 also provides evidence of the excellent

flow periodicity.



Figure7 shows blade pressure loading distributions
at the same four cases. Also included in the figure
are results of calculations with the three-dimensional

Navier-Stokes CFD code of Chima (see Chima and

Yokota, 1990). The results of the calculations are shown

as lines in the figure, while the experimental data is

shown as discrete points. The data shows excellent

spanwise symmetry as evidenced by data on symmetric

planes (e.g., 10% span and 90% span) typically over-

laying each other. Again, note the strong flow three-
dimensionality as evidenced by the spanwise variations

in loading between 0.1C_ and 0.6Cx on the suction

surface. Another interesting, but more subtle feature
to note is that the lowest suction surface pressures be-

tween 0.90 C= and 0.95 C= occur at 25% and 75% of

span. This feature is most obvious for the sonic exit

cases (b. and d. in Fig. 7) but is also true for the
supersonic exit cases. Flow field probe measurements

to be presented in the next section will show that the

horseshoe/passage vortex exits the trailing edge region
at near 25% span causing this loading characteristic.

a. Recx = 0.967 x 106 ....... - - "
Me;=1.32

.8 .4 / _.

b. Recx = 0.960 x 106 ..........
Me_=0.96 __llm-

.9.8.7-6

c. Re c = 0.488 x 106
Me;=1.30

d. Re c =0.488x10_ _dl/I I¢_
X

Mex = 0.96

,_IP'__ ,SFr,_ ,drcontours

P'/,
.9 .9 .9 .9 .9

1.0

0.8'

_, 0.6

0.4

0.2
0.0 0.2

a. Recx= 0.967 x 106

_.,_-. _--"_ _%. _,

- ..... ;_:;',.q_,2_l _ A

r I i i , , . i ,

0.4 0.6 0.8 1.0

x/C_ Mex = 1.32

1.0

0.8

0.6

0.4

0.2
0.0 0.2

b. Recx = 0.960 x 106

I "'*= "_s_l _,__. 1
*==, *.0_I

I & expr ' 0.0% I ",.._-_==P""_

cm l ,=,_.s.0_l "_'_
--_._oN. o_: 0z_l
--zo. Oexpr" 50%
...... 101 ' "

..... i._l o"_ _S-_l
,, IL-%_Z-_-V, ,

0.4 0.6 0.8 1.0

x/C Mex= 0.96

1.0 _ ' '

0.6

'_' &eXlX O.

0.4 ...... 10,'/.  72 :i :1--_v_ [-]eq_" 75 0%

.... 49%

..... _'p/. _exlx _.°'v" I 'ii./,

0._ . "'_ _ ' ,.o.
0.0 0.2 0.4 0.6 0.8

c. Reck= 0.488 x 106 x�

1.0

Mex = 1.30

1.0

0.8

¢

k 0.e

0.4

0.2
0.0

d. Rec;_= 0.488 x 106

eR)r 2.5% '_

I Ae=l_lO.0%l % ?
!

-- _-L'51.o,_so_l

.... ":,_..]#='_'__1

..... _._-7,1o=q__s.°_l
•-'-"1 Vexpr 97"5%!

0.2 0.4 0.6 0.8 1.0

x / C Mex = 0.96

Fig. 6 Endwall static pressure distributions Fig. 7 Blade pressure loading distributions



Flow-Field Probe Measurements Flow field probe

measurements include the pitch angle, or, the yaw angle,

/7, and the total pressure coefficient, Cp,t. The total

pressure coeflicient is defined as:

c,,, = (PT"- P')/(P',, -

Unlike the blade and endwall static pressure measure-

ments, all of the flow field data presented here was ob-

tained at Rec_ - 1.0 x 10e and at Mez = 1.3. The
data will first be presented as contour plots to show
the three-dimensional features of the flow. The pitch-

wise integrated averages of the flow data will then be

presented.

The flow field data are first given as contour plots

viewed from upstream looking downstream. Figure 2
shows the axial locations and pitchwise extent of the

five measurement planes. For all of the flow field data,

measurements are presented using a combination of 3-

hole and 5-hole probe data. Results from the 3-hole

boundary-layer probe were used in the near-wall region,

z/s __ 0.04. In this region, there were 14 spanwise data

points in each of 29 pitchwise survey locations. In the

region 0.04 _ z/s __ 0.54, 5-hole probe data were used.

In this region, there were 62 pitchwise data points in
each of 13 spanwise survey locations. The flow field

data is shown in Figs. 8, 9, and 10. In general, the data

show good agreement between the two probe results at

z/s = 0.04.

Total pressure data for the five measurement planes

is shown in Fig. 8. The data from the upstream planes
shows the thick but uniformly periodic inlet boundary

layer. Note that because of the large blunt leading edges
of the blades, some effects of the blades can be seen,

even one Cx upstream of the blade leading edge plane.

Recall that the minimum blade surface pressure region

at quarter span near the trailing edge shown in Fig. 7
was said to be the result of the horseshoe/passage vor-

tex. The measurements at x/Cx = 1.112 (Station 2),

just downstream of the trailing edge, clearly show the
horseshoe/passage vortices exiting the blade row near
each of the blade suction surfaces at one quarter of

the full span. The nearly complete lack of any end-

wall boundary layer here also indicates that the in-

let boundary layer low-momentum fluid is either be-

ing carried downstream by these vortices or has been
convected to the suction surface by the passage vortex.

Even this close to the trailing edge, the data shows that

the wakes are distorted by the vortices. Further down-

stream, this distortion makes the wakes almost unrec-

ognizable. At Station 2, very near the endwall and di-

rectly under the vortex loss cores (y/8 _-. 0.0, -.75, and

-1.5), are high gradient regions of Cp,i. The passage
vortices are pulling in low-loss fluid of Cp,i _, 0.25 from

the freestream while also pulling in high-loss endwall

boundary layer fluid of Cp,l _ 4.5. It is interesting to
note that even at the z/Cz = 1.612 location, the high-

est total pressure (lowest Cp,l _ 0.50) is still very near
the endwall, at less than z/s = 0.05. This high total

pressure region is evident at y/s near -1.0 and -1.75.

The strong three-dimensional effects axe due somewhat
to the thick inlet boundary layer but perhaps are due

more to the high degree of flow turning.

In general, the total pressure data shows good pe-

riodicity and good spanwise symmetry. The Station 2

data suggests that a somewhat two-dimensional region
near midspan exists after exiting the blade row. The

Station 3 and 4 data however, while still showing good

spanwise symmetry, show no significant regions near

midspan with zero spanwise gradients. This implies

that the upper- and lower-half flow structures are di-

rectly impacting each other.

Measurements of pitch angle, _, are shown in Fig. 9.
These measurements show that the flow was quite uni-

form at z/C_ = -1.000 while also showing that the
flow followed the prescribed inlet flow angle to within

0.4 °. The pitchwise and spanwise average flow angle
was within 0.2 ° of the nominal inlet flow angle of 63.6 ° .

The data from Stations 1 through 4 show, in general,

large variations in flow angle, particularly very close
to the endwall. If the measurement of a exceeded the

calibration range, the probe was approximately nulled

before obtaining data. The data at the z/Cz -- -0.176

plane show the strong influence of the blades on the
flow. For each downstream plane contour plot, there
is a dashed-line contour labeled ?2 ° corresponding to

the blade trailing edge metal angle. Contours with val-

ues greater than this angle indicate regions where the
flow was overturned relative to the blade. Close to the

trailing edge, x/Cx = 1.112, overturning predominates

near the endwall as driven by the passage vortex sec-

ondary flow. The vortex drives flow underturning in

the area above quarter span. Further downstream, the

magnitude of overturning decreases. At the furthest

downstream location, x/Cz -- 1.612, there is some un-

derturning at midspan.
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The locations of the vortices that were evident in

the Cp,t contours in Fig. 8 are also indicated in the

contour plots of a. However, it should be noted that in

general, the vortex loss core is not coincident with the
kinematic vortex core. The local pitch angle is greater

than the mean flow angle on one side of the vortex, and

less on the other side. At the z/C= = 1.112 plane, a

is approximately 72 ° across all three passages at z/s =
0.25. Large gradients in a are seen at y/s near 0.10 in

Passage 6, y/s near -0.75 in Passage 5, and y/s near

- 1.60 in Passage 4. Peak-to-peak differences in a across

these gradients are on the order of 15 to 20 degrees. At

the x/C= = 1.362 and 1.612 planes, a is approximately

72 o across all three passages at z/s = 0.30, indicating
that the vortices have risen slightly off of the endwall.

Measurements o.f yaw angle, _ are shown in Fig. 10.

Again, the measurements show very uniform flow one

C= upstream of the blade leading edge plane, and show

strong blade effects at x/C= = -0.176. The _ measure-

ments at the z/C= = -0.176 plane show some evidence

of spanwise asymmetry. Near midspan _ reaches -2 °

which is slightly outside of its uncertainty range. This
error may be caused by the probe interfering with the

horseshoe vortex upstream of the blade leading edge.
Endwall heat transfer measurements in the same facil-

ity (Giel et al., 1996) showed that because of the large,

blunt leading edge, the horseshoe vortex clearly affects

the flow at z/C= = -0.176. The fact that the probe

was angled back into the downstream region would also

tend to accentuate any interference.

The locations of the vortex cores at x/C= = 1.112
are more evident for these ]3 measurements than they

were for the a measurements. The cores were centered

at the point where ]3 = 0 °, between the maximum value

of f_ = +18 0 and the minimum value of -12 °, near

the same spanwise and pitchwise locations noted above.

Further downstream, the flow begins to straighten, but
the vortex core locations remain evident. The data

suggests that the vortex cores had risen from about

z/s -- 0.22 at x/C= = 1.112 to about z/s = 0.32 at

x/C= = 1.362 and 1.612, reasonably consistent with
the a measurements.

Area-weighted, pitchwise integrated averages were

calculated for all of the measured quantities over Pas-

sages 5 and 6 at the five measurement planes. These

averages are shown in Figs. 11, 12, and 13 as a func-
tion of span. As in the contour plots described above,

the near-wall data in the figures was obtained with the

3-hole boundary-layer probe while the remainder was

obtained with the 5-hole pitch/yaw probe. Some dis-

crepancies between the 3-hole and 5-hole probe data

are seen in the a averages of Fig. 12. Note though,

that all of the discrepancies are within the experimen-

tal uncertainty. Besides measurement uncertainty, part

of the reason for the discrepancies may be that spanwise
3-hole probe surveys were taken at only half the pitch-

wise resolution of the 5-hole probe data. Therefore,

some flow features with large gradients such as wakes
may not have been sufficiently resolved, particularly at

Station 2, thus affecting the integrations.

0*6 ' I ' I ' I ' I ' I

0.5 -

0.4 -

o.a -
-,,,.
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0.2 - _ -

0.1 -
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Fig. Ii Pitchwise averaged total

pressure coefficient

Fig. 12 Pitchwise averaged pitch angle a

The thick inlet boundary layer is clearly seen in

Fig. 11 at Stations 0 and 1. Downstream of the blade

row a significantly thinner endwall boundary layer is
seen, but the near-wall measurements also show its
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streamwisegrowth.Thepassagevortices and their as-
sociated loss cores are not evident in the downstream

averages although a weak minimum does appear be-

tween z/s _ 0.1 and midspan. This is because the
wake losses are dominant at x/C_ = 1.112, and Fig. 8
showed that the vortex and wake losses are reasonably

mixed out at the further downstream planes.
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Fig. 13 Pitchwise averaged yaw angle fl

Pitchwise averaged flow angle a measurements are

shown in Fig. 12. The Station 1 data again shows

the significant influence of the blades on the flow at

x/C_: = -0.176 The effects of the passage vortices are

clearly seen in the downstream averages. As noted
in the discussion of Fig. 9, the vortices rise towards

midspan as the flow proceeds downstream. As ex-

pected, the Station 2 near-wall data shows complex

but always overturned flow. Stations 3 and 4, however,

show underturning in a thin region near the endwall.

Despite large local values of flow angle fl as shown

in Fig. 10, Fig. 13 shows that the pitchwise averaged fl

angle is within approximately +20 , even at the down-
stream measurement planes. Since the differences be-

tween measurement stations in the pitchwise averaged

values of fl are not significantly outside the experimen-

tal uncertainty, no conclusions can be drawn based on

the spanwise variations shown in Fig. 13.

SUMMARY AND CONCLUSIONS

The measurements made in this facility showed

that very good periodicity existed for the test passage
and its adjacent passages. Achieving periodicity is es-

pecially important for data that is intended for veri-

fication of CFD analyses, since this is an assumption

of many Navier-Stokes analyses. The measurements at
the cascade inlet also show a well-defined and pitchwise

uniform flow that is highly desirable for comparing with

CFD analyses.

The data presented in this work show highly com-

plex three-dimensional flow structures, which were mea-
sured with a high degree of spatial resolution. The

strong horseshoe/passage vortex system was seen to be
largely responsible for the three-dimensionality. The

vortices are due in part to the thick inlet boundary

layer, but perhaps more so to the high degree of flow

turning. Their impact on the wake and the entire down-
stream flow field needs to be understood and modeled

more accurately as the current trend towards higher

turning turbine airfoils continues. The aerodynamic

data presented here, along with the endwall heat trans-

fer data presented by Giel et al. (1996) comprise a

complete set of data suitable for CFD code and model
validation. Electronic tabulations of the data are avail-

able at each measurement location. Measurements of

the blade and endwall surface pressures are also avail-

able. The tabulated flow field results are given at their

individual spatial locations and as integrated pitchwise

averages. Overall performance, as determined from flow

field averages, is important from a design standpoint
and is often the primary objective in CFD predictions.

For CFD verification, however, it is often more appro-

priate to compare measurements and analytic results
at discrete points rather than comparing them on an

overall basis. These pointwise comparisons have the

potential of giving the insight needed to improve the

predictive capability of CFD codes and models.
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