1,519 research outputs found

    Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    Get PDF
    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments

    Iodine source apportionment in the Malawian diet

    Get PDF
    The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg−1 in maize grain, 0.008 mg kg−1 in roots and tubers, but 0.155 mg kg−1 in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg−1. Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 μg d−1 compared to an adult requirement of 150 μg d−1. Despite low dietary-I intake from food, median UICs were 203 μg L−1 with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 μg d−1 based on consumption of 2 L d−1

    3D MHD Flux Emergence Experiments: Idealized models and coronal interactions

    Full text link
    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealized, in the sense that the internal energy equation only involves the adiabatic, Ohmic and viscous shock heating terms. However, provided the main aim is to investigate the dynamical evolution, this is adequate. Many interesting observational phenomena are explained by these models in a self-consistent manner.Comment: Review article, accepted for publication in Solar Physic

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    RAFT aqueous emulsion polymerization of methyl methacrylate : observation of unexpected constraints when employing a non-ionic steric stabilizer block

    Get PDF
    The RAFT aqueous emulsion polymerization of methyl methacrylate (MMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a steric stabilizer block. This non-ionic precursor has previously proved to be highly effective for the RAFT aqueous emulsion polymerization of various vinyl monomers such as benzyl methacrylate (BzMA), 2,2,2-trifluoroethyl methacrylate (TFEMA), isopropylideneglycerol monomethacrylate (IPGMA) or glycidyl methacrylate. However, an unexpected constraint was encountered in the case of MMA. Targeting a degree of polymerization (DP) of 20 to 100 for the PMMA block led to colloidal dispersions of kinetically-trapped spherical nanoparticles ranging in size from 17 nm to 31 nm. On the other hand, targeting DPs above 100 invariably led to the formation of highly flocculated spherical nanoparticles. This rather limited DP range is in striking contrast to the much higher DPs that can be targeted without loss of colloidal stability when using more hydrophobic monomers such as BzMA, TFEMA or IPGMA. The same flocculation problem was also evident when employing a PGMA precursor containing an anionic carboxylate end-group, but a series of colloidally stable dispersions could be obtained when using an anionic poly(methacrylic acid) stabilizer. Finally, the efficient removal of RAFT end-groups from PGMA50-PMMA80 nanoparticles was achieved by visible light irradiation using a blue LED source (λ = 405 nm). UV GPC studies confirmed that up to 87% dithiobenzoate end-groups can be removed from such nanoparticles within 12 h at 80 °C. On the other hand, using excess H2O2 under the same conditions only led to 24% end-group removal. This is because this water-soluble reagent has restricted access to the hydrophobic PMMA cores

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Influence of OATP1B1 Function on the Disposition of Sorafenib-β-D-Glucuronide

    Get PDF
    The oral multikinase inhibitor sorafenib undergoes extensive UGT1A9-mediated formation of sorafenib-β-D-glucuronide (SG). Using transporter-deficient mouse models, it was previously established that SG can be extruded into bile by ABCC2 or follow a liver-to-blood shuttling loop via ABCC3-mediated efflux into the systemic circulation, and subsequent uptake in neighboring hepatocytes by OATP1B-type transporters. Here we evaluated the possibility that this unusual process, called hepatocyte hopping, is also operational in humans and can be modulated through pharmacological inhibition. We found that SG transport by OATP1B1 or murine Oatp1b2 was effectively inhibited by rifampin, and that this agent can significantly increase plasma levels of SG in wildtype mice, but not in Oatp1b2-deficient animals. In human subjects receiving sorafenib, rifampin acutely increased the systemic exposure to SG. Our study emphasizes the need to consider hepatic handling of xenobiotic glucuronides in the design of drug-drug interaction studies of agents that undergo extensive phase II conjugation

    Simulated Optimisation of Disordered Structures with negative Poisson’s ratios

    Get PDF
    Copyright © 2009 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Mechanics of Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechanics of Materials, Vol. 41 Issue 8 (2009). DOI: 10.1016/j.mechmat.2009.04.008Two-dimensional regular theoretical units that give a negative Poisson’s ratio (NPR) are well documented and well understood. Predicted mechanical properties resulting from these models are reasonably accurate in two dimensions but fall down when used for heterogeneous real-world materials. Manufacturing processes are seldom perfect and some measure of heterogeneity is therefore required to account for the deviations from the regular unit cells in this real-life situation. Analysis of heterogeneous materials in three dimensions is a formidable problem; we must first understand heterogeneity in two dimensions. This paper approaches the problem of finding a link between heterogeneous networks and its material properties from a new angle. Existing optimisation tools are used to create random two-dimensional topologies that display NPR, and the disorder in the structure and its relationship with NPR is investigated

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore