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Abstract

Due to its inherent advantages, linear friction welding sohd-state joining process of increasing importance & th
aerospace, automotive, medical and power generation mguipindustries. Tangential oscillations and forge stroke
during the burn-& phase of the joining process introduce essential dynamée$y which can also be detrimental to
the welding process. Since burffi-& a critical phase in the manufacturing stage, processtorimj is fundamental

for quality and stability control purposes. This study aitmsmprove workholding stability through the analysis of
fixture cassette deformations. Methods and proceduresrémeps monitoring are developed and implemented in
a fail-or-pass assessment system for fixture cassettendafions during the burnfbphase. Additionally, the de-
noised signals are compared to results from previous ptauins. The observed deformations as a consequence
of the forces acting on the fixture cassette are measuredlglicturing the welding process. Data on the linear
friction-welding machine are acquired and de-noised usmgirical mode decomposition, before the bufhphase

is extracted. This approach enables a direct, objectivepanison of the signal features with trends from previous
successful welds. The capacity of the whole process mamiaystem is validated and demonstrated through the
analysis of a large number of signals obtained from weldikgepements.

Keywords: linear friction welding, process condition monitoring Jlbrt-Huang transform, time-frequency analysis,
empirical mode decomposition, non-stationary signal

1. Introduction

This paper discusses the setting up of a condition monga@ystem to verify the workholding stability during a
linear friction welding process using empirical mode deposition. The Introduction is split into four parts. Figstl
the background of the work is discussed in Section 1.1. Aftdch in Section 1.2 a review is held of closely related
work on condition monitoring systems found in the literatububsequently, some relevant developments of empirical
mode decomposition for manufacturing process monitoringgses are discussed in Section 1.3. Finally, the outline
of the rest of the paper is presented in Section 1.4.

1.1. Background: Linear Friction Welding

The linear friction welding process has many advantagesbamefits compared with other joining processes.
From a technical point of view, it has the advantage thatritlmused to join two complex shaped parts. The econom-
ical benefits of the process are that the process is fast angeliling area requires little preparation. Additionailly,
needs relatively low energy input and requires no consuasads means to assist the welding process, nor is there an
emission of dangerous substances during the process, gribkirelatively sustainable process.

However, a considerable perceived drawback of the prosassi for most applications the weld quality cannot
be inspected with appropriate non-destructive testinchous. Hence the weld verification is done by means of
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Figure 1: Schematics of a linear friction welding machinéapted from Ref. [2, Fig. 1]

process condition monitoring in combination with statistiprocess monitoring, to ensure a repeatable production o
reliable welds. The outcome of the linear friction weldinggess depends on a set of controllable input parameters
and other process parameters which can be monitored foegsaondition monitoring purposes. The most popular
application of linear friction welding is the manufacture‘blisks” (bladed disks) for aero-engines. Blisks have the
advantage over traditionally designed disk assemblig@ghiefir tree joint is no longer needed, which leads to up to
30% weight reduction and improvements in aerodynartticiency [1]. The work presented in this paper focusses on
the monitoring of the workholding stability during the buoff phase.

In Refs [2, 3] the basics of the working of a linear frictionldiag machine for blisk manufacturing are explained.
An adapted version of the working diagram that can be fourRReh [2] is shown in Fig. 1. As can be seen in the
figure, generally a LFW machine consists of a frame and twtisex The first section holds the substrate (disk)
on a platform. An actuator can move this platform in a cotgclmanner in the forging direction The second
section is used to provide the reciprocal oscillatory tatigémotion required for the LFW process. It comprises of
an actuator that provides the motion to drive the cassetteeitangential directiom The machine’s tooling consists
of the inner cage wherein a cassette is placed that holdsdheece (blade) [4]. To ensure workholding stability in
they—direction, the cassette deformation during the processidhie kept below certain limits.

During the LFW process the workpiece and substrate are datiand brought in contact with each other up to
a certain contact pressure. This is also known as the copit@ste [3] and is depicted in Fig. 2. The workpiece in
Fig. 1 is moved in a linear, reciprocating way, tangential aglative to the other part. The friction generates heat,
which is enough to make the material ductile. In the firstanse the rubbing is used to remove the outer layer of
material, this is called burn#bin this work and comprises what is generally known as théainjtonditioning, [3]),
the transition and equilibrium (frictional, [3]) and thesfipart of the deceleration (forge, [3]) phases [5], see Eig.
In the ramp-down phase, which is the first stage of the deaiiderphase in Ref. [5] the amplitude of the tangential
reciprocating motion is decreased, as can be seen in Fidté.tAis, when the reciprocating movementis completely
stopped, and the moving part is placed in the desired positie part and substrate are then forged onto each other
in the second part of the forge or deceleration phase. ItldHminoted that in the work presented here, the welding
process is monitored for the duration of the tangential omtirhese oscillations take place from the initial phase to
the ramp-down phase, as shown in Fig. 2 and this period istdérs ‘period of interest’ in the figure. Furthermore,
it should be noted that this work studies the reproducibditthe welds, hence, the analysis of the influence of the
different phases on the weld is not a part of this study. The stedteeader is referred to the papers by Vairis and
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Figure 3: Definition of the cassette deformations.

Frost [5] and Bhamijet al.[3], where the influence of the weld phases on the parametéisdussed in much greater
detail. However, the methodology presented here can bly eaténded to do such a mechanistic analysis of the weld
parameters.

A LFW machine is typically equipped with several sensorg ttzm be used to monitor the process variables,
some of these sensor are shown in Fig. 1. The processor isaisedtrol the processes and capture the data from the
sensory system. On the linear friction welding machine dsethe experiments presented in this work, force sensors
are placed on the cassette by the machine builder for theoperpf stable workholding, using these variables an
indirect analysis can be made of the workholding stabiihen all the measured forces are included in the analysis,
such that a proper force balance can be established, inweFshanics can be utilized, if necessary, to calculate
whether the required conditions for workholding are manilsir to the scheme proposed by Hamestdl. [6] to
obtain the cutting forces from the reaction forces on fixtaoators. However for the purposes here, ultimately aimed
at supporting the application of linear friction weldinggroduction of components for aero-engines, the intergst la
in monitoring the weld and compare it with other welds.

The force sensors are utilized to monitor the following defations shown in Fig. 3: compression, bending, bar-
relling, keystoning and warping, which, hence, are rel&tdtle workholding stability ity—direction, thex, y, z—direc-
tions of the right-handed coordinate system are given ih eathe deformation modes shown in Fig. 3.

1.2. Manufacturing process monitoring

Manufacturing process monitoring can be done with a vamétyensors. Typically, the sensor output is a dis-
crete signal in the time domain. When necessary, the sigmabe transformed to the frequency domain. Over the



last two or three decades, manufacturing process monitdoinquality control has received much attention in the
manufacturing research community [7-11].

When focussing more specifically on area of monitoring systéor machining operations, according to Refs
[8, 11], manufacturing process monitoring can be classifiefbur broad approaches within a process monitoring
application or scope. These scopes are e.g. tool condifioosess condition, machine tool state or surface roughnes
and dimensional variations. The four approaches withir edi¢hese applications are: (1) model-based, (2) exper-
imental, (3) design of experiment, (4) artificial intelligee. For the purposes of LF\Wocessmonitoring, a brief
review of the state-of-the-art in tool condition monitayiand process condition & machine tool state is conducted in
Sections 1.2.1 and 1.2.2 respectively.

1.2.1. Tool condition monitoring

1. As tool wear and tool breakage are the outcome of highldaamand stochastic processes, it is currently
impossible to establish reliable models that predict tl¢ Itte time or model the occurrence of tool breakage.
Note that tool breakage can cause severe disruption to ¢tieiption process and should be avoided if possible.
For this reason, there is a strong emphasis on the predifimol life time and or tool breakage, such that the
cutting tool can be replaced on time.

2. Tansekt al.[12] investigated the impedance, response to excitatidrlaa propagation of Lamb waves on the
tool surface to estimate the wear of drill bits.

Bisu et al. [13] executed a spectral analysis for machine tool diagnasil tool condition monitoring and did
further data processing with the Hilbert transform and sjeenvelope analysis (Short-Time Fourier Transform
(STFT)) to obtain a waterfall-type diagram to study the vétnar of the frequency spectrum over the elapse of
time to enhance their spectral analysis. Kalvoda and Hwadapdpplied the Hilbert-Huang transform (HHT)
to the measured signal of monitor tool wear in the frequermyan and compared the outcome of the results
with the widely applied Fourier transform.

Shacet al.[15] applied a modified single-channel blind sources sejparéBSS) technique based on the wavelet
transform and independent component analysis to sepamotirce signals related to a milling cutter and a
spindle for the application of tool breakage monitoring.e@let al. [16] measure the tool vibrations, apply
the wavelet transform and use a logistical correlationystofithe wavelet energy is made to identify feature
frequency bands that indicate tool weatr.

3. Sivasakthivett al.[17] conducted a series of experiments to apply the respamégce methodology to predict
the vibration amplitude for the following cutting parammstethe helix angle of cutting tool, the spindle speed,
the feed rate, and the axial and radial depth of cut. Ghieh [18] applied a singular spectrum analysis to relate
surface roughness and tool vibration to the spindle spesd fate, cutting depth, cutting feed direction and
holder type.

4. Yang and Yu [19] built a grinding wheel monitoring systemrptedict grinding wheel wear based on a wavelet
analysis of the acoustic emissions from the grinding preéesding into a support vector machine algorithm.
Boutros and Liang [20] applied hidden Markov models for tegedtion and diagnosis of faults in bearing and
cutting tool systems.

Kilundu et al. [21] studied tool wear by extracting features associateth vaol wear from three dierent
frequency bands, applying a windowed singular spectrunlysisaand several machine learning techniques.
Tobon-Mejiaet al.[22] measured cutting forces, acoustic emissions and tilmrsto train a ‘mixture of Gaus-
sians Hidden Markov Model’ to build a model to predict thefusbfetime of a milling cutter. Yeret al.[23]
trained a neural network (NN) with the frequency spectrulmamiustic emissions and applied a self-organization
feature map to make the method more robust with respect teeimée of noise.

1.2.2. Process and machine tool conditions
1. Trimbleet al.[24] established a finite element model that predicts toalds for diferent friction stir welding
parameters and tool failure. Their model has been validatedperimental results. Kalinski and Galewski [25]
built a mechanical model to simulate the cutting for a baliteilling process and applied optimal-linear spindle
speed control to prevent the occurrence of chatter in thengutrocess.
Zhou et al. [26] monitor an aspect of the machine tool state: the fault imachine tool feed-axis gearbox
utilizing the built-in position sensors. The signal is st frequency bands using the ensemble empirical
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mode decomposition (EEMD), which overcomes the mode migiogurring in the standard empirical mode
decomposition method (EMD).

2. Pérez-Canalest al. [27] calculated the approximate entropy (ApEn) in the meadwibration to identify
chatter conditions in the signal and compared it with a Feanhalysis of the same signals.
Jin and Shi [28] applied a wavelet analysis to check for eriothe tonnage signal of a stamping process.
Longangbach and Kurfess [29] designed a gauge that can medhsudiameter of a workpiece in-process on a
turning lathe using LVDTSs (linear variable distance traunsets).

3. Rabaniet al. [30] conducted a series of experiments to link the transfex of energy to the input jet energy,
area of abraded footprint and jet feed velocity for monitgrof abrasive waterjet milling process.

4. Kong and Nahavandi [31] established a control systengudh, inputing force signals and acoustic emissions,
to monitor the forging process and predict tool life.

1.2.3. Discussion of Related Work

Even from this short review, it is abundantly clear that atmea of techniques is applied for the purpose of
condition monitoring, as each application is unique or haiguwe aspects to it. Secondly, (combinations of) certain
techniques have certain advantages and disadvantagels edricoe employed for the monitoring problem and are
sometimes used because of the previous experience ordatyiliAlso using these techniques results in a working
solution because of constraints of a non-technical nafithis. is related to another important observation that shoul
be made when reviewing the relevant literature [7-11]: #rgd majority of the papers that can be found describe
work that has been carried out in laboratories, but theralmest no commercially available condition monitoring
systems for manufacturing applications. This is in partse of the above mentioned uniqueness of edbéreint
application and also because there is still a low level aidaadization which hampers the automated integration of
sensors in a monitoring systems, establishing of learniodets and automated diagnostics of the monitored process
or equipment. Furthermore, the majority of the monitoringsiders the analysis of stationary signals, whereas most
variables in a production system are inherently non-siatip However, as tools for the analysis of non-stationary
signals become more widely available, more recent worksdtyae non-stationary signals, e.g. Refs [14, 15, 26, 28].

1.3. Hilbert-Huang Transform

The Hilbert-Huang transform was established in 1998 by ld@dial. [32] to analyze nonlinear and non-stationary
data. This uses the empirical mode decomposition techri@mdé/ide a signal in a number of components, called
intrinsic mode functions (IMF), that are inféérent frequency bands. The mode decomposition does notflaark
lessly. One of the major issues is mode mixing. When this phmmon occurs, the frequency bands are smeared
out over multiple modes. As a result, the signal analysiscemome problematic. To overcome this problem, several
improvements and modifications have been suggested. Thentygd prominent methods encountered in applica-
tions are the ensemble empirical mode decomposition ancotimbdination of wavelet packet decomposition and the
Hilbert-Huang transform. Wu and Huang [33] proposed theepiide empirical mode decomposition that deals with
the white noise that causes mode mixing. Pehal.[34] proposed the application of the wavelet packet tramsfo
split the signal into a set of various narrow band signalstesthe use of the empirical mode decomposition.

Besides the field of machine monitoring, the Hilbert-HuamgrEform and empirical mode analysis have been
successfully applied for structural health monitoring][3&ult monitoring in rotating machinery [36], (spindlegéar-
ings [37] and gearboxes [26].

1.4. Paper outline

For the purpose of monitoring the forces on the cassettedr FW process, this paper follows the methodol-
ogy typically applied to establish a monitoring system fananufacturing process. In Section 2, firstly the applied
methodology is explained in Section 2.1. Then, the signat@sing and further processing are discussed in Sec-
tion 2.2. After which the extraction of the forces during then-df phase from the whole measured force vectors is
discussed in Section 2.3. A series of welding experiments baen conducted by Rolls-Royce plc. The methodol-
ogy presented in this paper has been applied to the measuroes for these experiments. In Section 3 the trends for
de-noised forces are discussed, followed by the conclaglaat can be drawn from this work in Section 4.
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2. Method

2.1. Applied methodology

The basic methodology to design monitoring and decisioningedystems is well established, see e.g. the six key
areas examined in the review paper by Abellan-Nebot and&upi]. However, each time the methodology needs to
be tailored to suit an application, and the right tools needgt applied. The flowchart of the methodology to develop
the cassette forces monitoring system is shown in Fig. 4.

As one can see in Fig. 4, firstly, the force measurement v&arercollected from the sensory system of the LFW
machine. Subsequently, these vectors are de-noised abdrtieff period is extracted from the signal. After which
the welding trend is compared against the values of prexdaasessful production runs.

Apart from comparing the forces with previous productiongtior the purpose of process condition monitoring,
a secondary objective for the process monitoring systemdetect other oscillatory content in the measured signals.
As the burn-& phase consists of the oscillatory motion that occurs duasinglatively short phase within the whole
LFW process — usually between 1 and 2 s, depending on thecapiphi — it is easy to extract this period as explained
later in Section 2.3.

2.2. Signal de-noising
2.2.1. Hfects of filtering

The combination of noise, forced vibrations and tangemsaillations occurring in the LFW machine can be
traced in the measured forces acting on the cassette. Waeigthal is diferentiated with respect to the time, these
phenomena can obscure the trend of the force rﬁ and the change of force ra(g’;). For this reason, some
filtering of the signal is essential, especially, for rermgythe oscillatory component introduced by the reciprogati
movement of the LFW machine. However, the filtering actianaduces extra distortion to the signal. In Fig. 5 the
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effects of several filtering strategies on the trend in one ofdhee signals are shown. As the reciprocal frequency
wris the dominant frequency, the first choice is to apply a néitigy (a band-stop filter with a narrow stopband) with

a notch frequency equal to the reciprocal frequencyf the LFW process. However, the signal contains higher
harmonics, furthermore, applying purely a notch filter fessiin spurious harmonics as can be seen in the left hand
detail in the top most sub-figure in Fig. 5. Consequently,application of a notch filter does not give the desired
results. The signal can be further smoothed by adding celdai-pass filtering action. Traditionally, to smooth the
signal, only a low-pass filter is used. This means that itrél@ut the signal components from the high-frequency
range. A Fourier transform shows that a steep change in tidiegit of the measured signal contains many high-
frequency components. Hence filtering with a typical lovegpamoothing filter will always change the gradient to
make it less steep. This is shown in the centre sub-figuregnT;iwhere the fect of filters with an increasingly
shorter pass-band is shown. As can be seen in the figure, #mgeh in the gradient of the filtered trend become
increasingly dull. A more recent yet firmly established noetlis to de-noise signals using the wavelet transform.
This form of de-noising is suited for the analysis and desimgj of signals of non-linear processes such as the LFW
process. As can be seen in the bottom sub-figure in Fig. Sethétrof wavelet de-noising is superior to low-pass and
notch filtering. However, as is demonstrated in the cengtet detail, small noise spikes or serrations are unavogdabl
The reason for this lies in the nature of the signal reprediemt in the wavelet domain. According to the wavelet
analysis when a noiseless signal is decomposed into sulisbasignal without noise has a relatively sparse signature
in these sub-bands. The standard de-noising functions osskef this fact, by removing all signal components which
are smaller than certain threshold values from the sub<afidy noise component that is larger than the threshold
values remains in the sub-band, causing noise spikes aradises. These small noise spikes or serrations come out
as large noise spikes when the derivative of the trend isesiudrhich forms a large drawback for the analysis of the
trends in the measured cassette forces. All this means tieahas to pay the price of a less accurate signal when
applying filtering action to smooth the signal. When the sthimg filter is designed with a much too low cuffo
frequency to remove the oscillatory component in the sigihal filter will cut out much of the undesired noise etc.,
but will significantly decrease the accuracy of the signath&schanges in the gradient become duller. Therefore,
filter design for signal smoothing filters comprises an opgtation of the trade{d between the loss of accuracy in the
gradients and the remaining noise content.

2.2.2. EMD principle [32]

The Hilbert-Huang transform (HHT) is devised to analyzelim@ar and non-stationary signals. The fundamental
part of the HHT is the empirical mode decomposition (EMD) yAgeal-valued signak(t) can be separated into a set
of intrinsic mode functions (IMFsj;(t) and a residual(t) so that:

X(t) = Z Ci(t) + rn(t). 1)
i=1

Each individual IMF possesses its frequency band that camblyzed. To obtain each IMF, the EMD algorithm
runs until it finds an oscillatory function around the locatan defined by the upper and lower envelopes governed
by the local maxima and minima, respectively. This osalatfunction is defined as follows:

1. The number of extremaftiers from the number of zero-crossings in the IMF by zero oraimaost.
2. At any point, the mean value of the lower and upper envelapeund the IMF is zero.

The EMD algorithm employs a sifting process, which worksakWws. Firstly, it looks for the envelopes around
the signal. Between these envelopes there is a mgaiihe first componert; is formed by the dference between
the data and the mean:

h]_ = X(t) - M. (2)
In the consecutive sifting proceds, is used as data:
h1g = hy —myy, 3)

where the new component beconiggand the new meamy;. This sifting process is repeat&dimes, untilhy, has
converged close enough to the IMF criteria defined aboven ighecomes

hik = hyg-1) — M, (4)
7
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andhy is designated the first IMEg; = hy. The first IMF contains all the shortest oscillations anddeepossesses
the highest frequency band in the signal. SubsequentlyirgiéMF is subtracted from the original signal as follows:

ri=x{t-cuy, (5)

wherer, is the residual, which is then treated as data and the siftingedure is repeatedtimes until the values
in residualr,, are smaller than the threshold value of the sifting procedtwppage criterion, or form a monotonic
function. Eq. (5) is a crucial step in the EMD analysis catiieit for this work. It allows the frequency bands to be
studied individually and to be subtracted from the sigt{glto study the trend in the signal.

In the HHT, the instantaneous frequency is calculated usiadilbert transform, which finds the complex con-
jugatey(t) of any real valued functior(t) as long as it is in the Lebesgue integrable function spagk {3en:

H(t) = % f+ : tXE—T)Tdt. (6)
The analytic signal is found by combining the real and the glemvalued parts:
Z(t) = x(t) + iH(t) = a(t)e’®, (7)
where
a(t) = V() + HA(Y) 8
is the instantaneous amplitude of the signal and
ot) = arctar(%) 9
is the instantaneous phase of the signal. Hence, the iastemis frequenay(t) simply becomes
w(t) = % (10)

2.2.3. Frequency band selection

In order to find the trend in the measured force signals, thiésligbntaining the noise and oscillation need to be
separated from the trend; the EMD process is used as a filtde: Gdne selection of the frequency bands is based on
the physical meaning of its contents. This can be illusttéte analyzing the HHT of one of the force signals of the
experimental welds presented in Section 3: barrellingdsraveld 7 in Table 2. The HHT consists of two parts: the
IMFs and the instantaneous frequency. In Fig 6, all the IMifgHie duration of the burnfbphase of the barrelling
force of weld 7 obtained with the EMD are shown. In this figurean be seen that during the burfi-period
the first six IMFs contain the noise and reciprocating motimuced oscillations. The corresponding instantaneous
frequencies for each of the IMFs shown in Fig 6, are shown @n Fi The instantaneous frequencies show that the
IMFs are split up in frequency bands. Within the bandwidtfre§uency bands the instantaneous frequency can move
up or down over time. However, it can be seen that the frequieands that comprise the trends contain frequencies
lower than the reciprocating frequeney, since they are lower than one in the plots in Fig. 7.

One-by-one experimental investigation using the HHT fiorcin MarLap® [39] of each of the signals reveals
the same pattern, namely that the IMFs containing the trétiteameasured force all have instantaneous frequencies
lower thanw,. Therefore it is possible to select the IMFs that form thesa@nd oscillation band by considering
the average instantaneous frequency during the bfinphase in an IMF which determines how many IMFs form the
noise and oscillation band. Furthermore in Fig. 6b, it casdsn that IMF 7 is no longer recognisable as a typical IMF
over the period of interest: there are no zero crossings fieraporally the frequency in Fig 7b of IMF 7 drops below
zero, further indicating that the IMF locally doesn’t meelhdrt’s criterion for instantaneous frequency. From Fig 7
it can be observed that the calculated instantaneous finegug not a smooth line. The clearly visible dots indicate
that sometimes the frequency is making a jump or even becoegaive. For the calculation of the value of the
average instantaneous frequency, the results below zedistarded. As a result, finding the average instantaneous
frequency and separating the noise and oscillations frentrénd form the third and forth step in the process, as is
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11



<r
=1,

i
zn:l G

noise +oscill.band

. yes
>

noise +oscill.band

Figure 8: Algorithm to select number of IMFs to form noise asdillation band and trend.

shown in Fig. 4. Note that the instantaneous frequency of 1k Fig. 7c is entirely below zero as this is residual
and not a proper IMF; when investigating the instantanemeiency over the whole time period from the beginning
of the contact phase till the end of the forge phase, the &equis zero, apart from the beginning and end and the
period of motion along the z-axis.

Beginning and endfects in the EMD process in the form of waves at the beginninbesm of the signal which
come in larger amplitudes and lower frequencies when the hifaber increasedtact the accuracy of the trend.
Therefore, after subtracting the IMFs that form the noisg@stillation bands, the beginning and end of the de-noised
forces during the burnfbphase can significantly dier from the unprocessed measured signal. For this reason, th
de-noised values at the beginnings and ends are compatetheitinprocessed values and if thfetience trespasses
a certain value, one IMF is deducted from the noise and fregguband to make a better fit between the trend and
the measured signal. As this is too detailed to show in Fignedpiseudo algorithm for this step is shown in Fig. 8
and works as follows. Starting at the highest IMF numibéne algorithm checks if the average frequeingy;) of
any IMF ¢; during the burn-ff phase is higher than the reference valudf the average frequency is below the the
reference value, the algorithm will move one IMF number Ioted — 1 and check whether the average frequency for
this IMF higher than the reference value, if the averageufeegy is still larger than the reference value, the algorith
will move as many IMF numbers lower until the average freqydsecomes smaller than the reference value, as can
be seen in Fig. 8. If for a certain IMF the average frequenbglew the reference value, the sum of all the IMFs 1L to
should form the noise oscillation band. If théfdrence between the measured analytic signal and trendstogf
the sum of IMFS + 1 ton att = t, ort = t is larger than a certain reference vatu¢he found trend is too inaccurate
and IMF ¢; is subtracted from the noise and oscillation band and adul¢let trend. The dierence between the
measured signal and the new trend at att, ort = tg again compared with reference valueThis procedure will
repeat until the found éierence is smaller than the reference value, as can be seign & F

Following experimental and automated analysis, it appisats depending on which of the five forces is consid-
ered, band comprising the parts of the signal formed by tligerend oscillations is made up by the first Z IMFs
containing the higher frequencies as can be seen in Table 1.

If one considers the energy in the IMF, the spectral enemgyfthe noise tends to decay for higher IMF numbers,
which Flandriret al.[40, Chapter 3] and Wu and Huang [40, Chapter 5] take as meé&sestablish a noise band con-
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| weld number | compression| bending | barreling | keystoning [ warping |
1 1-4 1-8 1-6 1-6 1-4
2 1-4 1-7 1-6 1-6 1-4
3 1-5 1-8 1-5 1-6 1-4
4 1-4 1-8 1-5 1-5 1-4
5 1-5 1-8 1-6 1-5 1-4
6 1-4 1-6 1-6 1-6 1-4
7 1-5 1-8 1-6 1-6 1-5

Table 1: Number of IMFs that form noise and oscillation.
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Figure 9: Measured and de-noised signals weld 7.

sisting of IMFs for filtering purposes. The physical appfotaken here is in agreement with the energy distribution
as found by Flandriet al. and Wu and Huang per IMF. The energy in an analytical signedliculated as

Ex = (X(t), X(t)) = f i, (11)

To de-noise the barrelling signal for weld 7 from Table 2 shawFig. 9 it was found that 6 IMFs form the noise
and oscillation band in the measured signal and were subséysubtracted. In Fig. 7d it can be seen that after 6
IMFs the energy for the IMFs becomes substantial. The sagnel is seen in Fig. 10: in general the lowest number
of the IMFs containing the trend of the measured signal cafobed were the energy in the IMF increases after
a minimum found between IMF 4 7, consistent with the findings of Flandrét al. [40, Chapter 3] and Wu and
Huang [40, Chapter 5].

2.3. Feature extraction

The penultimate step in Fig. 4 is the feature extraction.sTork studies the monitoring of the cassette forces
during the burn- phase, which takes place during the reciprocating motich@imoving part, as shown in Fig. 2
and discussed in Section 1.1. It is therefore an unambidyidaBned time period during a weld operation. Hence, the
start and end times of the buritfphase can be easily and accurately established from ottesureament and control
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Figure 10: Energy in measure signals per IMF.

signals from the LFW machine. Once these are establishesk tire then applied to identify and extract the butn-o
phase in the measured force signals. As has been done foratticpl application of this work. Alternatively, these
can be found using standard feature extraction technigugs,using the instantaneous frequency information from
the HHT.

2.4. Experimental Welds

The results shown in this work are applied to series of prypection experiments that were conducted on the LF60
linear friction welding machine at the Rolls-Royce plc [4]4These experiments consist of welding two blocks of
Ti6Al4V alloy together. The experimental series of weldshewn in Table 2. In this table, seven experimental welds
are given. They difer in two ways from each other as is described below.

A difference between the welds are the settings applied to the LEutime. These settings prescribe the values
for the control settings. The control of each of the LFW maels axes (see Fig. 1 for a definition of they, z—axes)
is done with a combination of proportional-integral-dative (PID) and Amplitude and Phase control (APC) [4].
These seven welds are part of a larger series of test weldwevww, it is not necessary to present all these results
here. In total 3 settings were used for the APC controlled, 2different PID values for the control of the tangential
z-axis, as is shown in Table 2. It is thought that the change ofrobparameters has a minor influence on the welds,
as the normal input parameters such as desired upset andazatachforge force, tangential oscillation frequency etc.
were not changed.

Additionally it can be noted that weld 1-4 were used to vetifg motion control of the—axis [41]. Weld 5 is
made after removing and placing the inner cage back, whighyal dfects the machine’s tooling. Weld 6 and 7 come
from another batch, as the whole series of welds is made deagar period of time.

Figure 11a shows all the measured signals, scaled, Fig.Hdtssall the trends of those scaled measured signals.
The axes of the plots in this work have been normalized dustisfRoyce plc confidentiality. For an appreciation of
the machine’s dynamics and to understand why it is crucélddvanced signal processing techniques are applied for
the welding process monitoring, the typical weld lengthfevaseconds and generally has over 100 cycles, in addition
the four forces acting on the cassette are in the order ofdf(Kdonewtons. As mentioned in the introduction, the
measured forces on the cassette are related to the defonmias shown in Fig. 3: compression, bending, barrelling,
keystoning and warping are all shown in the figures.
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weld number| APC Setting| PID settingsz—axis | weld date|

1 APC1 PID1 day 1
2 APC1 PID1 day 1
3 APC2 PID1 day 1
4 APC2 PID1 day 1
5 APC1 PID1 day 160
6 APC3 PID2 day 293
7 APC3 PID2 day 294

Table 2: Weld settings for the Amplitude and Phase Contr@i&C) and the Proportional-Integral-Derivative (PID)
controller of the linear friction welding machine.

Additionally, for reasons of comparison, after the featexé&action in the time domain, the bending, barrelling,
keystoning and warping forces are all starte-a0s and at zero load. However, this did not work for the congioes
forces, as this made comparison mor@dilt. These forces have been translated down around zéng,the average
value of the 7 welds to align the start value of the compresaiound zero at= ty,.
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Figure 12: Compression forces on cassette versus time @liaed).

3. Results

3.1. Trends
3.1.1. Compression
The beginning and endtfects occurring in the EMD of the compression forces sigresglted in strong deviations
att = t, between measured signals and the trend. Consequentlyptoximate the trend, a lower number of IMFs
had to be used, resulting in the occurrence of oscillatioitisé signal, as can be found in Fig. 12. As a result, with the
currently applied signal processing, the trends of the aesgion forces are flicult to compare between each other.
In Fig. 12, it can be seen thatffirent machine settings result inffiérent weld profiles. When comparing these
weld with welds with a smaller weld area, the required forbesome smaller and theftérences become more
pronounced, however this would overload this demonstmatfaising EMD to de-noise cassette forces with too much
information. Welds 1, 2 and 5 (aroumd- 0.375) do not have such a high maximum as welds 3, 4, 6 and 7 (droun
t=0.31).

3.1.2. Bending

The bending forces shown in Fig. 13 show similar trends toctirapression forces shown in Fig. 12. Note that
the trend in weld 1 in Fig. 13 goes below zero. As mentioned/epfor reasons of comparison the signal starts at a
scaled force of zero at= t,. Therefore, the physical forces still come with a positiggs

Welds 6 and 7 are relatively similar, but there is no realimiésion between the welds 1-4. Also note that the
bending force trend for weld 5 increases the whole time.

3.1.3. Barrelling

The trends for the barrelling forces are plotted in Fig. 1dr Welds 1, 2 and 5 these trends behave infiedént
manner compared to those of welds 3, 4 and 5, however thiwlelmavould be more pronounced in case the trends
were smooth enough to establish the force rate fgintiating the force with respect to time to study the gradi
It can be seen that weld 1, 2 and 5; weld 3 and 4; and weld 6 anellyiag close to each other.
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Figure 15: Keystoning forces on cassette versus time (noad.

3.1.4. Keystoning

As can be seen in Fig. 15, the trends in the keystoning foemardless of weld area size are characterized by a
steep positive gradient, leading to a maximum at arduad.3 followed by a steep negative gradient that lasts until
t = 0.5- 0.55. From this point onward, the keystone force trends platedil t = 0.85— 0.9. Note that the trend in
weld 5 behaves dtierently, as the trend keeps a negative gradient in thatse@ubsequently, the trend gets a steeper
negative gradient again to end with a scaled force. Howewelds 1-4 and 6, 7 are not easily distinguishable from
each other.

3.1.5. Warping

Due to the two dferent warping directions, the warping forces show the ktrgariation within the forces studied
in this work. The first direction is shown in Fig. 3, the secasid deformation in the opposite direction. Hence in
Fig. 16, welds 1-4 show the exact opposite trend of welds Hid67a This makes weld 5 quite distinguishable from
welds 1-4, and also welds 6 and 7 are obviousfiedéent from welds 1 and 2 and welds 3 and 4. Weld 1 has an extra
maximum occurring at = 0.375 compared to the other welds.

3.2. Analysis of Residue

3.2.1. Residue envelope analysis

From the residues shown in Fig. 17 it can be seen that theitdésvariation in the magnitude and shapes of the
force oscillations of the monitored forces in and amongsitieasured sets of the fiveffédrent forces. The exception
here is weld 5, which has quite affdirent signature compared to the other welds, as was alrdaiyred when
comparing the trends in the forces. Weld 5 seems not only fophase with the other welds, the magnitude of the
oscillations is diferent too, which will also shown when analysing the peakesla the power spectral density plots
in the next section.
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Figure 18: Power spectral density: (a) power spectral tep8it of residue obtained with EMD, (b) power spectral
density plot of filtered residue.
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weldl weld2 weld3 weld4 weld5 weld6 weld?7
compression
-12.6% -12.5% -125% -12.6% -0.4% -12.5% -12.6%
-04%  -0.4% -0.4% -0.4% -12.5% -0.4% -0.4%
-0.7%  -0.7% -1.2% -1.4% -1.5% -0.7% -0.7%
bending
-12.9% NA -0.4% -04% -12.6% -0.4% -0.4%
-0.4% NA -1.3% -1.3% -04% -12.7% -12.6%
-1.3%  -1.4% -12.6% -12.6% -32% -3.1% -1.4%
barrelling
-12.6% -12.6% -12.6% -12.6% -0.4% -12.6% -12.6%
-04% -04% -04% -0.4% -12.6% /N -13.3%
-0.7% -33% -33% -0.7% -32% -29% -3.2%
keystoning
-1.4% -12.6% -12.6% -12.6% -3.3% -12.7% -12.7%
-0.1% -0.7% -0.7% -0.7% -12.6% -0.7% -0.4%
-12.7% -1.4% -1.4% -0.1% -0.4% -0.4% -0.7%
warping
-12.5% -12.6% -12.6% -125% -12.2% -125% -12.7%
-04% -03% -04% -0.4% -14% -04% -0.4%
-0.7% -09% -129% -0.7% -0.7% -3.2% -3.3%

Table 3: Relative dferences between the amplitudes of the three largest pedke fnequency spectrum of each
force after using EMD as a filter bank and filtering in a powerctal density analysis.

3.2.2. Frequency domain analysis

In this section the frequency content of the residue formetthe IMFs that span the noise and oscillation band of
the measured signal is studied. This allows for the detectfaindesired frequency components in the force signals.
In Fig. 18, the power spectral density of the residue is shoaltulated with the Fast Fourier Transform.

Firstly, in the figure, it can be noted that the excitatiomfrency, i.e. the frequeney of the reciprocating motion
in z—direction is dominant, which is as expected. In the figure,ftequency axis is scaled such that a frequency
whenw, = 1, wy = w;. Higher harmonics ofy; are clearly visible. Furthermore, the power of the signahponents
in the frequency domain for the compression and warpingef®is of one order higher than those of the bending,
barrelling and keystoning forces. Additionally, the poweéthe components in welds 1 and 2, welds 3 and 4, and
welds 6 and 7 is relatively similar in magnitude within théisiee group of welds, the three groups themselves are
dissimilar in magnitude. The magnitudes of weld 5 do not tmafg with those of welds 1 and 2. This means that
analyzing the average amplitude of the residue can helpteyrdae whether a weld belongs to a certain group. The
more subtle power spectra only constitute a small coniohunh the total power in the signal. These contributions
are so small, that even when considering that the power ircillatig signal is proportional to the square of the
oscillation amplitude, the amplitude of the reciprocafirefjuency and its higher order harmonics are still more than
one or two orders larger than the amplitudes of the otheu&agy components.

The residue obtained with EMD de-noising is given in Fig. 48d the residue established with filtering using a
standard first-order filter is shown in Fig. 18b. To compassé) the same scale is used. When zooming in to look at
the more subtle contributions, comparing Fig. 18a and 18b @ach other, the same subtle contributions are clearly
visible. Furthermore, the residue established by de-ngigie measured signal with EMD, shows some content for
near zero frequencies. Because of the beginning and féact®occurring in standard EMD, a small deviation can
occur below the deviation threshold as discussed in Se2t@dB3, where the algorithm shown in Fig. 8 is explained.
This small deviation locally adds a small constant valuetiyas the beginning of the burnfiperiod, which explains
the near zero frequency contributions.

There is some more content whep < 1 for the compression residue, which possibly indicatesemaiing,
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however, this contribution is relatively small. Both EMD-deised and filtered residuals of the warping forces show
some more low frequency < 1) content.

A more quantitative comparison of the two power spectrabigmnalyses is made in Table 3. Here the amplitude
of the three largest peaks of the power components in thalsigthe frequency spectrum are compared:

e = Pemp — Pro-filter « 100% (12)
Pevmb

wherePgyp is the amplitude of the power component in the residue obthity de-noising using EMD, arftko_fier
is the amplitude of the power component at the same frequeithbge residue obtained with filtering using a standard
first-order filter. Where the entry says /Al in Table 3 this means that the highest peaks coming fronfittezing
belong to diferent higher order harmonics of the reciprocating motitma'guency. It is clearly visible that amplitudes
of signal components in the frequency domain are consligtentaller than those obtain using the EMD-based de-
noising method. This means that the amplitudes of the fdteesidues are smaller than those of the EMD-based
de-noised residues, meaning that the noise is removedrefuwhen applying the EMD-based de-noising approach.
This reinforces the choice of using EMD-based de-noisingrder to de-noise the force signals in the linear friction
welding process. Using the well-known approximatigh + 2e ~ 1 + €, the percentage fierence when considering
the amplitude rather than the power of the signal componémtsmall e would be about a factor 2 smaller, and
should be multiplied by the correction for the wave shape.

3.3. Overall comparison of the welds

Due to the fact that the inner cage was taken out and placddibdlae linear friction welding machine, weld 5
shows a dierent signature for the force profiles than the other welds j$ because the tooling needs to settle during
the first weld after taking out the inner cage. Subsequerdsweill show a larger repeatability.

The compression and warping forces and the power spectnaltgenalyses show thatftirent welds settings
for welds 1 and 2, welds 3 and 4 and welds 6 and 7 give slighffgrint results and allow these welds to be grouped
together. Overall, as could be expected, the welds showeasityi However, the fact that this can be studied means
that obtaining the trends in the forces can be applied to toptiie repeatability of the welds.

4, Conclusions

This work studies the development of a cassette forces pramjtsystem for a linear friction welding machine.
The monitoring of the forces consists mainly of an analysighie trend in the signal during the period, when the part
to be welded on the substrate is undergoing an oscillatotjomd.e. during the burn{dperiod. To obtain the trend
in the signal, the following method has been established:

1. The datais captured from the linear friction welding (LjFmachine using its sensory and data storage systems.

2. The data is de-noised before other data processing tékes, po prevent the adverséexts on accuracy by
beginning and endfects. For robust data processing, a de-noising strategpdaHie trends in the signals
based on empirical mode decomposition (EMD) has been desigsing the intrinsic mode functions (IMFs)
as filter bank.

3. The selection of the number of IMFs that form the noise awaillation band is automated and is based on the
average frequency of the IMFs during the buffiferiod, but can also automatically adapt to a lower number
of IMFs when the trend and the measured signfidtoo much at beginning and end of the buffiperiod.

4. The feature extraction takes place in the time domainrevbegin and end times of the burfi-phase are
identified from the sensory system of the LFW machine, andidiees acting on the cassette are extracted from
their respective vectors utilizing the begin and end times.

5. The data are compared against previously analyzed wstaslished with the outlined methodology.

Some other contributions established in this work are tHeviing:

e The methodology has been demonstrated with the analysssifields performed on a LFW machine.
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e The automated selection of the IMFs that form noise and poo®luced oscillation band has been based on
the average instantaneous frequency of the IMFs duringuhe &ff phase.

e For frequency domain analysis, the EMD de-noising strategp/been benchmarked against traditional filtering.

e Applying EMD based de-noising of the signal gives more aatiinformation on the trend in the signal.
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