1,000 research outputs found

    Inertial effects on two-particle relative dispersion in turbulent flows

    Full text link
    We report experimental results on the relative motion of pairs of solid spheric particles with initial separations in the inertial range of fully developed turbulence in water. The particle densities were in the range of 1ρp/ρf81 \lessapprox \rho_{p}/\rho_{f} \lessapprox 8, \textit{i.e.}, from neutrally buoyant to highly inertial; and their sizes were of the Kolmogorov scale. For all particles, we observed a Batchelor like regime, in which particles separated ballistically. Similar to the Batchelor regime for tracers, this regime was observed in the early stages of the relative separation for times t0.1t0t \lessapprox 0.1 t_0 with t0t_0 determined by the turbulence energy dissipation rate and the initial separation between particle pairs. In this time interval heavier particles separated faster than fluid tracers. The second order Eulerian velocity structure functions was found to increase with density. In other words, both observations show that the relative velocity between inertial particles was larger than that between tracers. Based on the widely used, simplified equation of motion for inertial point-particles, we derived a model that shows an increase in relative velocity between inertial particles. In its scale dependence, however, it disagrees quantitatively with the experimental results. This we attribute to the preferential sampling of the flow field by inertial particles, which is not captured by the model.Comment: 6 pages, 5 figures, 2 tables, epl2.cls, submitted to EP

    Turbulence attenuation by large neutrally buoyant particles

    Get PDF
    Turbulence modulation by inertial-range-size, neutrally-buoyant particles is investigated experimentally in a von K\'arm\'an flow. Increasing the particle volume fraction Φv\Phi_\mathrm{v}, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as Φv2/3\propto\Phi_\mathrm{v}^{2/3}, suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.Comment: 7 pages, 4 figure

    River inflow and salinity changes in the Caspian Sea during the last 5500 years

    Get PDF
    Pollen, spores and dinoflagellate cysts have been analysed on three sediment cores (1.8–1.4 m-long) taken from the south and middle basins of the Caspian Sea. A chronology available for one of the cores is based on calibrated radiocarbon dates (ca 5.5–0.8 cal. ka BP). The pollen and spores assemblages indicate fluctuations between steppe and desert. In addition there are some outstanding zones with a bias introduced by strong river inflow. The dinocyst assemblages change between slightly brackish (abundance of Pyxidinopsis psilata and Spiniferites cruciformis) and more brackish (dominance of Impagidinium caspienense) conditions. During the second part of the Holocene, important flow modifications of the Uzboy River and the Volga River as well as salinity changes of the Caspian Sea, causing sea-level fluctuations, have been reconstructed. A major change is suggested at ca 4 cal. ka BP with the end of a high level phase in the south basin. Amongst other hypotheses, this could be caused by the end of a late and abundant flow of the Uzboy River (now defunct), carrying to the Caspian Sea either meltwater from higher latitudes or water from the Amu-Daria. A similar, later clear phase of water inflow has also been observed from 2.1 to 1.7 cal. ka BP in the south basin and probably also in the north of the middle basin

    Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    Get PDF
    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/{\eta} \approx 100) than the Kolmogorov length scale {\eta} in a von K\'arm\'an swirling water flow (R{\lambda} \approx 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.Comment: 18 pages, 7 figures, submitted to "Measurement Science and Technology" special issue on "Advances in 3D velocimetry

    Optically switched magnetism in photovoltaic perovskite CH3_3NH3_3(Mn:Pb)I3_3

    Full text link
    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3_3NH3_3(Mn:Pb)I3_3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman-Kittel-Kasuya-Yosida interactions without heating up the spin system. Our finding offers an alternative, very simple and efficient way of optical spin control, and opens an avenue for applications in low power, light controlling magnetic devices

    Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

    Full text link
    Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO3_3 and SmNiO3_{3} films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap.Comment: 12 pages, 13 figure

    Ergodic and non-ergodic clustering of inertial particles

    Full text link
    We compute the fractal dimension of clusters of inertial particles in mixing flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic 'centrifuge' effect. In the limit of St to infinity and Ku to zero (so that Ku^2 St remains finite) it explains clustering in terms of ergodic 'multiplicative amplification'. In this limit, the theory is consistent with the asymptotic perturbation series in [Duncan et al., Phys. Rev. Lett. 95 (2005) 240602]. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for arbitrary values of St; the ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku ~ St ~ 1 too, ergodic 'multiplicative amplification' makes a substantial contribution to the observed clustering.Comment: 4 pages, 2 figure

    Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    Get PDF
    Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by the sensitivity of lake isotopic composition. Based on these model simulations, stable isotopes appear to be especially useful for detecting changes in recharge to lakes with a G index of between 50 and 80 %, but response is non-linear. Simulated monthly trends reveal that evolution of annual lake isotopic composition can be dampened by opposing monthly recharge fluctuations. It is also shown that changes in water quality in groundwater-connected lakes depend significantly on lake location and on the intensity of recharge change
    corecore