Using a combination of spectroscopic ellipsometry and DC transport
measurements, we determine the temperature dependence of the optical
conductivity of NdNiO3 and SmNiO3 films. The optical spectra show the
appearance of a characteristic two-peak structure in the near-infrared when the
material passes from the metal to the insulator phase. Dynamical mean-field
theory calculations confirm this two-peak structure, and allow to identify
these spectral changes and the associated changes in the electronic structure.
We demonstrate that the insulating phase in these compounds and the associated
characteristic two-peak structure are due to the combined effect of
bond-disproportionation and Mott physics associated with half of the
disproportionated sites. We also provide insights into the structure of excited
states above the gap.Comment: 12 pages, 13 figure