46 research outputs found

    Nuevas drogas de abuso. Las catinonas sintéticas (“sales de baño”)

    Get PDF
    Existen en la actualidad una amplia gama de drogas, que generalmente son sustancias ilegales usadas por sus propiedades recreativas, creadas a partir de otras drogas ya conocidas anteriormente y que, usando diversas estrategias a la hora de su comercialización, se han puesto en circulación evadiendo controles y convirtiéndose en ``legales´´. Sustancias como las catinonas sintéticas, los cannabinoides sintéticos, krokodil se comercializan sin restricción debido a vacíos legales. Las catinonas sintéticas son el grupo más común de compuestos psicoactivos, derivados la planta Catha edulis que se comercializan como “sales de baño” tanto en tiendas como a través de internet. Su acción se basa en dos mecanismos implicados: Bloqueo de la recaptación del transportador y elevación de la liberación presináptica provocando síntomas excitatorios tales como: agitación psicomotora, automatismos, parkinsonismo, temblores, taquicardia, dolor torácico, cambios en el segmento S-T, hipertensión, hipertermia, midriasis, psicosis paranoide, depresión, ataques de pánico, entre otros. Presenta varios patrones de consumo principalmente de forma esnifada. Su tratamiento es parecido al de la intoxicación por MDMA, mediante el uso de benzodiacepinas y tratamientos de soporte

    Dispersal-niche continuum index : a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly

    Get PDF
    Patterns in community composition are scale-dependent and generally difficult to distinguish. Therefore, quantifying the main assembly processes in various systems and across different datasets has remained challenging. Building on the PER-SIMPER method, we propose a new metric, the dispersal-niche continuum index (DNCI), which estimates whether dispersal or niche processes dominate community assembly and facilitates the comparisons of processes among datasets. The DNCI was tested for robustness using simulations and applied to observational datasets comprising organismal groups with different trophic level and dispersal potential. Based on the robustness tests, the DNCI discriminated the respective contribution of niche and dispersal processes in pairwise comparisons of site groups with less than 40% and 30% differences in their taxa and site numbers, respectively. In the observational datasets, the DNCI suggested that dispersal rather than niche assembly was the dominant assembly process which, however, varied in intensity among organismal groups and study contexts, including spatial scale and ecosystem types. The proposed DNCI measures the relative strength of community assembly processes in a way that is simple, easily quantifiable and comparable across datasets. We discuss the strengths and weaknesses of the DNCI and provide perspectives for future research.Peer reviewe

    Macroécologie et macroévolution des mammifères cénozoïques d’Amérique du Nord : analyse et modélisation

    No full text
    The study of past biodiversity, its evolutionary dynamics and related control parameters is a fundamental prerequisite for understanding the ongoing global biodiversity loss. Considering the environmental and historical conditions related to taxonomical assemblages, the dynamic links associating environmental changes and biodiversity can be inferred. To achieve this, a Geographic Information System (GIS) has been developed based on Janis et al.'s (1998, 2008) compilations of the north-American Cenozoic mammal fos- sil record. Ranging from the Cretaceous/Paleogene crisis (66 Ma) to the early Pleistocene (�1.8 Ma), this fossil record covers extant United States, Canada, and Mexico territories; it is one of the best known and most complete fossil record in the World. Based on these georeferenced data of fossil occurrences, it be- comes possible to characterize distribution patterns and to observe spatial and temporal variations of sev- eral aspects of biodiversity (taxonomical diversity, disparity, functional diversity, phylogenetic diversity.). The observation of spatial and temporal variations of biodiversity can be achieved at various geographical scales (local to continental) and for different types of ecological or taxonomical assemblages (communi- ties, metacommunities, trophic guilds, size groups, species, genera, families.); in turn, these observations make possible testing various hypotheses at the interface between macroevolution and macroecology. In this way, two main research axes have been developed in this work. The first research axis roots into a central issue of macroevolutionary studies: the impact of the chronological organization of paleontologi- cal data within a discrete biozonation on the reconstruction of biodiversity and evolutionary rate (origina- tion and extinction) time series. Based on simulations, the effect of time discretization is investigated; an algorithm is developed in order to correct the distorting effect induced by the time discretization process. The second research axis developed in this work roots into a central macroecological question: based on taxonomical occurrence data sampled within assemblages, how to characterize the relative contribution of niche- and dispersal-assembly processes in the building and conservation of communities and meta- communities? Building on Clarke's (1993) SIMPER method, a new analytical tool called "PER-SIMPER" has been developed in order to answer this question. First, the accuracy and consistency of this new method is evaluated through cellular automaton-like simulations. Then, the PER-SIMPER analysis of all biozones recorded within the GIS is achieved, and results are discussed with respect to the climate and environmen- tal changes related to the evolutionary history of north-American Cenozoic mammals. Finally, the results obtained from both research axes allow the identification of several short, middle and long-term analytical as well as methodological research perspectivesL'étude de la biodiversité passée, de sa dynamique et des paramètres déterminant son évolution, est un préalable nécessaire à la compréhension de l’érosion de la biodiversité actuelle. En étudiant les conditions environnementales et historiques associées aux assemblages taxinomiques, il est possible d'inférer les liens dynamiques qui unissent les variations de l'environnement et de la biodiversité. Pour cela, un Système d'Information Géographique (SIG) a été développé à partir des compilations du registre fossile des mammifères terrestres cénozoïques d'Amérique du Nord publiées par Janis et al. (1998, 2008). Ce registre, s'étendant de la crise Crétacé/Paléogène (66 Ma) au Pléistocène inférieur (�1,8 Ma) et couvrant les territoires actuels des Etats-Unis, du Canada et du Mexique, est l'un des registres fossiles les mieux connus et les plus complets au monde. Sur la base de ces données d'occurrences géoréférencées, il devient possible de caractériser les patrons de distributions et d'observer les fluctuations temporelles et spatiales de plusieurs dimensions de la biodiversité (diversité taxinomique, disparité, diversité fonctionnelle, diversité phylogénétique.). L'observation de ces variations spatio-temporelles de biodiversité peut être réalisée à différentes échelles (locale à continentale) et pour différents types d'assemblages écologiques ou taxinomiques (communautés, métacommunautés, guildes trophiques, groupes de taille, espèces, genres, familles.), permettant en retour de tester différentes hypothèses à l'interface entre macroévolution et macroécologie. Ainsi, deux axes de recherche principaux ont pu être développés dans le cadre de ce travail. Le premier s'enracine dans une problématique centrale en macroévolution : l'impact de l'organisation chronologique des informations paléontologiques dans un système biozonal discret sur la reconstruction de séries temporelles de diversité et de taux d'évolution (apparitions et extinctions). A partir de simulations, l'effet de la discrétisation temporelle est estimé en fonction du registre fossile étudié ; un algorithme est développé afin d'en corriger les distorsions. Le second axe de recherche s'enracine dans une problématique centrale en macroécologie : comment caractériser a posteriori, sur la base de données d’occurrences taxinomiques échantillonnées au sein d'assemblages, la part relative des processus d'assemblage par la niche et par la dispersion dans la construction et le maintien de communautés et métacommunautés ? Afin de répondre à cette question, un nouvel outil analytique appelé « PER-SIMPER » est développé à partir de la méthode SIMPER (Clarke 1993). Dans un premier temps, la précision et la consistance de cette nouvelle méthode sont évaluées à l'aide de simulations basées sur des automates cellulaires. Dans un second temps, l'analyse PER-SIMPER de l'ensemble des biozones enregistrées au sein du SIG est réalisée ; les résultats obtenus sont discutés au regard des changements climatiques et environnementaux associés à l’histoire évolutive des mammifères cénozoïques nord-américains. Finalement, les résultats obtenus permettent d’identifier différentes perspectives de recherche à court, moyen et long termes, tant sur leplan analytique que méthodologiqu

    Macroevolution and Macroecology of North American Cenozoic Mammals : Analysis and Modelisation

    No full text
    L'étude de la biodiversité passée, de sa dynamique et des paramètres déterminant son évolution, est un préalable nécessaire à la compréhension de l’érosion de la biodiversité actuelle. En étudiant les conditions environnementales et historiques associées aux assemblages taxinomiques, il est possible d'inférer les liens dynamiques qui unissent les variations de l'environnement et de la biodiversité. Pour cela, un Système d'Information Géographique (SIG) a été développé à partir des compilations du registre fossile des mammifères terrestres cénozoïques d'Amérique du Nord publiées par Janis et al. (1998, 2008). Ce registre, s'étendant de la crise Crétacé/Paléogène (66 Ma) au Pléistocène inférieur (�1,8 Ma) et couvrant les territoires actuels des Etats-Unis, du Canada et du Mexique, est l'un des registres fossiles les mieux connus et les plus complets au monde. Sur la base de ces données d'occurrences géoréférencées, il devient possible de caractériser les patrons de distributions et d'observer les fluctuations temporelles et spatiales de plusieurs dimensions de la biodiversité (diversité taxinomique, disparité, diversité fonctionnelle, diversité phylogénétique.). L'observation de ces variations spatio-temporelles de biodiversité peut être réalisée à différentes échelles (locale à continentale) et pour différents types d'assemblages écologiques ou taxinomiques (communautés, métacommunautés, guildes trophiques, groupes de taille, espèces, genres, familles.), permettant en retour de tester différentes hypothèses à l'interface entre macroévolution et macroécologie. Ainsi, deux axes de recherche principaux ont pu être développés dans le cadre de ce travail. Le premier s'enracine dans une problématique centrale en macroévolution : l'impact de l'organisation chronologique des informations paléontologiques dans un système biozonal discret sur la reconstruction de séries temporelles de diversité et de taux d'évolution (apparitions et extinctions). A partir de simulations, l'effet de la discrétisation temporelle est estimé en fonction du registre fossile étudié ; un algorithme est développé afin d'en corriger les distorsions. Le second axe de recherche s'enracine dans une problématique centrale en macroécologie : comment caractériser a posteriori, sur la base de données d’occurrences taxinomiques échantillonnées au sein d'assemblages, la part relative des processus d'assemblage par la niche et par la dispersion dans la construction et le maintien de communautés et métacommunautés ? Afin de répondre à cette question, un nouvel outil analytique appelé « PER-SIMPER » est développé à partir de la méthode SIMPER (Clarke 1993). Dans un premier temps, la précision et la consistance de cette nouvelle méthode sont évaluées à l'aide de simulations basées sur des automates cellulaires. Dans un second temps, l'analyse PER-SIMPER de l'ensemble des biozones enregistrées au sein du SIG est réalisée ; les résultats obtenus sont discutés au regard des changements climatiques et environnementaux associés à l’histoire évolutive des mammifères cénozoïques nord-américains. Finalement, les résultats obtenus permettent d’identifier différentes perspectives de recherche à court, moyen et long termes, tant sur leplan analytique que méthodologiqueThe study of past biodiversity, its evolutionary dynamics and related control parameters is a fundamental prerequisite for understanding the ongoing global biodiversity loss. Considering the environmental and historical conditions related to taxonomical assemblages, the dynamic links associating environmental changes and biodiversity can be inferred. To achieve this, a Geographic Information System (GIS) has been developed based on Janis et al.'s (1998, 2008) compilations of the north-American Cenozoic mammal fos- sil record. Ranging from the Cretaceous/Paleogene crisis (66 Ma) to the early Pleistocene (�1.8 Ma), this fossil record covers extant United States, Canada, and Mexico territories; it is one of the best known and most complete fossil record in the World. Based on these georeferenced data of fossil occurrences, it be- comes possible to characterize distribution patterns and to observe spatial and temporal variations of sev- eral aspects of biodiversity (taxonomical diversity, disparity, functional diversity, phylogenetic diversity.). The observation of spatial and temporal variations of biodiversity can be achieved at various geographical scales (local to continental) and for different types of ecological or taxonomical assemblages (communi- ties, metacommunities, trophic guilds, size groups, species, genera, families.); in turn, these observations make possible testing various hypotheses at the interface between macroevolution and macroecology. In this way, two main research axes have been developed in this work. The first research axis roots into a central issue of macroevolutionary studies: the impact of the chronological organization of paleontologi- cal data within a discrete biozonation on the reconstruction of biodiversity and evolutionary rate (origina- tion and extinction) time series. Based on simulations, the effect of time discretization is investigated; an algorithm is developed in order to correct the distorting effect induced by the time discretization process. The second research axis developed in this work roots into a central macroecological question: based on taxonomical occurrence data sampled within assemblages, how to characterize the relative contribution of niche- and dispersal-assembly processes in the building and conservation of communities and meta- communities? Building on Clarke's (1993) SIMPER method, a new analytical tool called "PER-SIMPER" has been developed in order to answer this question. First, the accuracy and consistency of this new method is evaluated through cellular automaton-like simulations. Then, the PER-SIMPER analysis of all biozones recorded within the GIS is achieved, and results are discussed with respect to the climate and environmen- tal changes related to the evolutionary history of north-American Cenozoic mammals. Finally, the results obtained from both research axes allow the identification of several short, middle and long-term analytical as well as methodological research perspective

    Data from: Evaluating the accuracy of biodiversity changes through geological times: from simulation to solution

    No full text
    Estimating biodiversity and its variations through geologic time is a notoriously difficult task, due to several taphonomic and methodological effects that make the reconstructed signal potentially distinct from the unknown, original one. Through a simulation approach, we examine the effect of a major, surprisingly still understudied, source of potential disturbance: the effect of time discretization through biochronological construction, which generates spurious coexistences of taxa within discrete time intervals (i.e., biozones), and thus potentially makes continuous- and discrete-time biodiversity curves very different. Focusing on the taxonomic-richness dimension of biodiversity (including estimates of origination and extinction rates), our approach relies on generation of random continuous-time richness curves, which are then time-discretized to estimate the noise generated by this manipulation. A broad spectrum of data-set parameters (including average taxon longevity and biozone duration, total number of taxa, and simulated time interval) is evaluated through sensitivity analysis. We show that the deteriorating effect of time discretization on the richness signal depends highly on such parameters, most particularly on average biozone duration and taxonomic longevity because of their direct relationship with the number of false coexistences generated by time discretization. With several worst-case but realistic parameter combinations (e.g., when relatively short-lived taxa are analyzed in a long-ranging biozone framework), the original and time-discretized richness curves can ultimately show a very weak to zero correlation, making these two time series independent. Based on these simulation results, we propose a simple algorithm allowing the back-transformation of a discrete-time taxonomic-richness data set, as customarily constructed by paleontologists, into a continuous-time data set. We show that the reconstructed richness curve obtained this way fits the original signal much more closely, even when the parameter combination of the original data set is particularly adverse to an effective time-discretized reconstruction

    Help notes PER-SIMPER

    No full text
    Help notes of the PER-SIMPER R function. R function included too

    Data from: PER-SIMPER - a new tool for inferring community assembly processes from taxon occurrences

    No full text
    Aim: Understanding how ecosystem functioning and evolution shape taxonomic as- semblages is a lively debate basically involving two major opposite views: the niche- and dispersal-assembly hypotheses. Here, we introduce a new method allowing for the identification of the first-order process of assembly underlying a set of taxonomic assemblages. Methods: Building on Clarke’s SIMPER (for “similarity percentage”) analysis of a taxon/ locality occurrence data set, we develop a permutation-based algorithm named PER- SIMPER, allowing for the identification of the first-order process—either niche- or dispersal-assembly—that drives species distribution within two or more groups of assemblages. We demonstrate the reliability and robustness of the method through cellular automaton-like simulations generating niche-assembled and/or dispersal-as- sembled species occurrence data sets. Sensitivity analysis further allows evaluation of its accuracy and robustness to sampling effort, including reduced numbers of sampled localities and/or species. Main conclusions: Niche- and/or dispersal-assembled communities generate very dif- ferent SIMPER profiles, which, in turn, allow for the accurate and consistent identifica- tion of the first-order process of assembly operating within two or more groups of species assemblages through a threefold randomization procedure named PER-SIMPER. The PER-SIMPER method appears robust to varying sampling efforts that may affect the number of sampled localities and/or species, especially when one of the two processes of assembly dominates the other. The PER-SIMPER analysis can be achieved on any empirical occurrence data set using a dedicated R function available as Supporting Information

    Data from: Evaluating the accuracy of biodiversity changes through geological times: from simulation to solution

    No full text
    Estimating biodiversity and its variations through geologic time is a notoriously difficult task, due to several taphonomic and methodological effects that make the reconstructed signal potentially distinct from the unknown, original one. Through a simulation approach, we examine the effect of a major, surprisingly still understudied, source of potential disturbance: the effect of time discretization through biochronological construction, which generates spurious coexistences of taxa within discrete time intervals (i.e., biozones), and thus potentially makes continuous- and discrete-time biodiversity curves very different. Focusing on the taxonomic-richness dimension of biodiversity (including estimates of origination and extinction rates), our approach relies on generation of random continuous-time richness curves, which are then time-discretized to estimate the noise generated by this manipulation. A broad spectrum of data-set parameters (including average taxon longevity and biozone duration, total number of taxa, and simulated time interval) is evaluated through sensitivity analysis. We show that the deteriorating effect of time discretization on the richness signal depends highly on such parameters, most particularly on average biozone duration and taxonomic longevity because of their direct relationship with the number of false coexistences generated by time discretization. With several worst-case but realistic parameter combinations (e.g., when relatively short-lived taxa are analyzed in a long-ranging biozone framework), the original and time-discretized richness curves can ultimately show a very weak to zero correlation, making these two time series independent. Based on these simulation results, we propose a simple algorithm allowing the back-transformation of a discrete-time taxonomic-richness data set, as customarily constructed by paleontologists, into a continuous-time data set. We show that the reconstructed richness curve obtained this way fits the original signal much more closely, even when the parameter combination of the original data set is particularly adverse to an effective time-discretized reconstruction
    corecore