15 research outputs found

    Olive Processing: Influence of Some Crucial Phases on the Final Quality of Olive Oil

    Get PDF
    The extra virgin olive oil (EVOO) chemical and sensory characteristics depend on several factors such as the environment, the genetic matrix, stage of olive ripeness, phytosanitary conditions of olive, time and way of olive storage before transformation, and technological features of olive mill. In this chapter, the time of olive storage and two different types of extraction equipment are taken into account to deep understand their impact on chemical and sensory profile of EVOO. The knowledge of how these factors act will allow to manage the production chain adequately and to act on the various steps in order to improve the quality of EVOO. The sensory modifications of olive oils processed with two different types of extraction system during the storage were also evaluated

    Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars

    Get PDF
    This research focused on the variation of the kernel and pellicle (seed coat) constituents during nut growth, from early development to maturity.Material and methods. Nuts of three hazelnut cultivars widely grown in Italy: \u2018Tonda Gentile Romana\u2019, \u2018Tonda di Giffoni\u2019 and \u2018Nocchione\u2019. were randomly sampled weekly, from the same trees, starting from the first week of July 2007 (day of the year: DOY = 186) until the beginning of September (DOY = 249), at harvest time. Oil content increased continuously during the development of the kernel, from 30\u201335 g 100 g 121 dry weight (DW) at the beginning of July, to 61\u201368 g 100 g 121 DW in the first week of September. Total monounsaturated fatty acids were the main group of fatty acids in the oil and oleic acid was the most predominant one, showing slight variations depending on the cultivar and kernel growth stage. Nitrogen content in the kernel decreased continuously during development, from 4.2 g 100 g 121 DW to 2.9 g 100 g 121 DW on average among the cultivars. Soluble sugars, mainly sucrose, showed a wide fluctuation until late July, and the content observed in the mature seed was about 5 g 100 g 121 DW in all cultivars. The organic acids, mainly represented by malic acid, showed a large decrease during the early stages (July), and reached on average a content of about 0.3\u20130.4 g 100 g 121 DW at the mature stage. Starch content for all cultivars was highest at the first sampling date, then decreased rapidly, coinciding with the initial kernel expansion stage. Starch levels then increased to a second peak in early August, then rapidly decreased again, followed by a gradual decline up to the time of nut ripening. The total phenol content was mainly concentrated in the pellicle and showed wide variation during the nut development both in the kernel and pellicle. The complexity of these dynamics can explain the different kernel taste in immature and mature states, and highlights the possibilities of optimizing the orchard management and harvesting time

    Effect of Duration of Olive Storage on Chemical and Sensory Quality of Extra Virgin Olive Oils

    No full text
    This work considered the influence of the duration of olive storage on the chemical and sensory properties of extra virgin olive oil. In total, 228 batches of olives collected during three successive crop seasons were sampled in seven industrial mills; information about olive batches (variety, harvest date) was collected, together with the produced oils. Four classes of storage times were considered: ≤24 h, 2–3 days, 4–6 days, ≥7 days. The oils’ quality parameters free acidity, peroxide number and K232 increased significantly as storage duration increased, while phenolic content decreased significantly, with a resulting effect on oil stability. The fatty acid composition was not affected by the olive storage period, while α-tocopherol, lutein and β-carotene content decreased as storage duration lengthened. Finally, the main positive sensory attributes (olive fruity, green notes, bitter and pungency) underwent a statistically significant reduction with the increase in storage duration, while the intensity of defects increased, suggesting that the duration of olive storage has an important effect on the quality of the final oil

    Effect of Different Foliar Particle Films (Kaolin and Zeolitite) on Chemical and Sensory Properties of Olive Oil

    No full text
    The use of kaolin foliar treatments in olive growing is a well-established approach that aims at protecting crops from the negative impacts of environmental stresses and from insect pests. The use of zeolite particle films is a far more recent technique. The experimentation was carried out on Correggiolo cv. cultivated in the Emilia-Romagna region (Italy). Foliar treatments were performed in summer until olive harvest. Ripening index, weight, and the oil content of olives were measured. Acidity, peroxide numbers, K232, K270 and total phenols were evaluated as well as fatty acid profiles, determined via GC-FID and phenolic compounds; vitamins and pigments were determined via HPLC-DAD. Quantitative descriptive analysis (QDA) sensory analysis and taint tests were performed. Olives treated with zeolite showed higher oil contents, and the oil obtained exhibited higher contents of total phenols, tyrosol and deacetoxy oleuropein aglycon with respect to the oils produced with kaolin and the control oil. Oils produced from kaolin-treated olives showed sensory profiles characterized by notes of berries (that are not typical of the Correggiolo cultivar). In the scenario of environment-friendly oil production, treatments employing zeolitite particle films represent both a valid alternative to chemical insecticide against olive fly attack and a practice that has a positive influence on the overall oil quality

    Effect of different foliar particle films (kaolin and zeolitite) on chemical and sensory properties of olive oil

    No full text
    During the growing season, the use of foliar treatments based on fine grained geomaterial to reduce the negative impact of environmental stresses and protect the olives from insect pests is a well-known approach; however, while kaolin powders have been widely employed, zeolitite-based materials are much less known and exploited. The aim of this study is to assess the effect of the two different treatments (zeolitite and kaolin) on the chemical and sensory qualities of the oils produced. The study was carried out during two consecutive crop seasons in a 15 year old commercial olive orchard (Olea europaea), cv Correggiolo, located on the Appennine hills near Bologna (Italy). Foliar treatments were distributed during summer, until olive harvest. Ripening index, weight, oil and water content were measured on olive fruits. Olive productions were transformed in oils using a low scale continuous mill, quality parameters (free acidity, peroxide numbers, K232, K270, total phenols, fatty acids) were evaluated according to the official methods described in Regulation EC 2568/91 and subsequent amendments. Phenolic compounds, vitamins and pigments were determined by HPLC-DAD. Sensory analysis was performed by the panel of Agency for Agrofood Sector Services of Marche region (ASSAM), a fully-trained analytical taste panel recognized by the International Olive Oil Council (IOC) of Madrid, Spain, and by the Italian Ministry for Agriculture, Food, and Forestry Policy. Olives treated with zeolite showed higher oil contents with respect to the other treatments. Oils produced by plants treated with zeolite particle film exhibited higher contents of total phenols, tyrosol, oleuropein and secoiridoids than to the oils produced by other treatments. Oils produced from olives treated with kaolin had sensory profiles characterized by sweet notes ascribable to ripe fruits, the tasters perceived notes of berries that are not typical of the Correggiolo cultivar. The sensory taint test revealed a statistically significant difference between oils produced from olives treated with kaolin and the control, whereas no difference emerged between oils obtained from olives treated with zeolite and the control. Particle film can influence some physiological plant parameters (photosynthesis, transpiration, water use efficiency) and, by consequence, it has also an influence on olive and oil quality. Olive plants treated with zeolite produced oils with higher antioxidant endowment, while oils produced from plants treated with kaolin were characterized by lower phenolic contents. Moreover, the kaolin treatment significantly affected the organoleptic properties of oils

    Evaluation of four medlar cultivars: agronomical, pomological and qualitative traits

    No full text
    Medlar (Mespilus germanica L.) has been recently cultivated due to good potential for diversification of fruit production among the minor pome fruits. The species is subjected to high risk of erosion, since it is characterized by low genetic diversity. However, the genetic resources of cultivated and wild medlar are not well known. In the Italian nursery industries, only a limited number of cultivars are available, often characterized by absence of genetic fidelity. Therefore, a collection of the available medlar varieties has been established at the Experimental Orchard of Tuscia University, to carry out their pomological characterization and the evaluation of fruit quality and agronomical performance. The study has been focused on vegetative and productive behavior of the cultivars and on pomological traits, organic acids, sugars and sensory profile of the fruits. The investigated cultivars were ‘Gigante’, ‘Precoce’, ‘Comune’ and ‘Goccia’. All the genotypes were grafted onto quince rootstocks (Cydonia oblonga L.). The trees were trained in a free vase form. Soil has been ordinarily managed for weed control, and drip irrigation supply has been ensured during the summer period. The cultivar ‘Comune’, characterized by a high yield efficiency and good fruit quality, seems suitable for the establishment of specialized orchards for commercial purposes, while the low yielding cultivar ‘Gigante’ is interesting mainly for ornamental purposes

    Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd)

    No full text
    To further our understanding of the mechanisms governing salt stress responses and adaptation in halophytes, we explored morphological, metabolic, and gene expression responses to high salinity in quinoa (Chenopodium quinoa Willd). The main objective of this study was to analyze selected responsive genes in a time-course experiment to test for expression kinetics and to compare short-term salt-induced effects at the transcript level between two Chilean landraces belonging to different ecotypes. Quinoa genotypes exhibit a large variability in their responses to salinity, but it is not clear whether this is strictly related to the ecotype to which they belong. We tested this hypothesis by comparing the expression levels of genes involved in growth, ion homeostasis, abscisic acid (ABA) biosynthesis, perception, and conjugate cleavage, polyamine (PA) biosynthesis and oxidation, and proline biosynthesis as well as genes encoding ABA-dependent and independent transcription factors. Landraces R49 (salares ecotype) and Villarrica (VR, coastal-lowlands ecotype) were analyzed from 0.5 to 120 h after transfer to saline (300 mM NaC1) or non-saline (control) medium. All the genes, except CqSOS1 and CqNHX, were investigated here for the first time in quinoa under salt stress. Transcript levels were determined by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis. Germination, seedling growth, ABA, and PA contents were evaluated in parallel. Even though on saline medium germination was inhibited in VR but not in R49, seedling growth reduction at 120 h was not substantially different in the two landraces. The ABA biosynthetic enzyme NCED was the most strongly salt-induced gene; ABA content was similarly enhanced (shoots) or unaffected (roots) in both R49 and VR. NaC1 treatment also altered transcript levels of some PA metabolic enzymes and the PA profile leading to an enhanced ratio between the higher PM and putrescine. All other genes also exhibited similar expression profiles in response to salinity in the two landraces especially in roots, while in shoots some differences were observed. Our results provide new information indicating that crucial salt adaptation strategies at the molecular level and in terms of ABA and PA contents are shared by the coastal-lowlands and salares landraces; however, the timing of the onset of transcriptional changes (e.g., NCED, ABF3, and RD22) may reflect genotype-dependent constitutive and/or inducible adaptive strategies.CONICYT (Chile) University of Bologna (RFO) FONDECYT (Chile) 3130624 University of Bologna REP33/2015 REP54/201

    ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine

    Get PDF
    Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses.EEA La ConsultaFil: Murcia, Mauro Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Fontana, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Pontin, Mariela Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; ArgentinaFil: Baraldi, Rita. Consiglio Nazionale delle Ricerche. Instituto di Biometeorologia; ItaliaFil: Bertazza, Gianpaolo. Consiglio Nazionale delle Ricerche. Instituto di Biometeorologia; ItaliaFil: Piccoli, Patricia Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentin

    ABA and GA 3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters

    No full text
    Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.EEA MendozaFil: Murcia, Mauro Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Pontin, Mariela Ana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria La Consulta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Baraldi, Rita. Consiglio Nazionale delle Ricerche. Istituto di Biometeorologia; ItaliaFil: Bertazza, Gianpaolo. Consiglio Nazionale delle Ricerche. Istituto di Biometeorologia; ItaliaFil: Reinoso, Herminda. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Ciencias Naturales; ArgentinaFil: Gomez Talquenca, Gonzalo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza. Departamento de Virología; ArgentinaFil: Bottini, Ambrosio Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Piccoli, Patricia Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentin
    corecore