63 research outputs found

    The Effects of Exfoliation, Organic Solvents and Anodic Activation on Catalytic Hydrogen Evolution Reaction of Tungsten Disulfide

    Get PDF
    International audienceThe rational design of transition metal dichalcogenide electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of a renewable energy carrier. To this end our work has made three main contributions. At first, we have demonstrated that exfoliation via ionic liquid assisted grinding combined with gradient centrifugation is an efficient method to exfoliate bulk WS2 to nanosheets with a thickness of a few atomic layers and lateral size dimensions in the range of 100 nm to 2 nm. These WS2 nanosheets decorated with scattered nanodots exhibited highly enhanced catalytic performance for HER with an onset potential of-130 mV vs. RHE, an overpotential of 337 mV at 10 mA cm-2 and a Tafel slope of 80 mV dec-1 in 0.5 M H2SO4. Secondly, we found a strong aging effect on the electrocatalytic performance of WS2 stored in high boiling point organic solvents such as dimethylformamide (DMF). Importantly, the HER ability could be recovered by removing the organic (DMF) residues, which obstructed the electron transport, with acetone. Thirdly, we established that the HER performance of WS2 nanosheets/nanodots could be significantly enhanced, by activating the electrode surface at a positive voltage for a very short time (60 s), decreasing the kinetic overpotential by more than 80 mV at 10 mA cm-2. The performance enhancement was found to arise primarily from the ability of a formed proton-intercalated amorphous tungsten trioxide (a-WO3) to provide additional active sites and favourably modify the immediate chemical environment of the WS2 catalyst, rendering it more favorable for local proton delivery and/or transport to the active edge site of WS2. Our results provide new insights into the effects of organic solvents and electrochemical activation on the catalytic performance of two-dimensional WS2 for HER

    Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

    Get PDF
    Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As a consequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of -21.9 mA.cm(-2) at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use in solar-driven water splitting, which may simplify fabrication procedures and potentially reduce production costsThis work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT – The Portuguese Foundation for Science and Technology, under the project “PTDC/CTM-ENE/2349/2014” (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/21102/28/12/2016/S). L. F. Liu acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Qiao acknowledges the financial support of the Ministry of Science and Technology of China (Grant Agreement No. 2016YFE0132400).info:eu-repo/semantics/publishedVersio

    Sonochemical edge functionalisation of molybdenum disulfide

    Get PDF
    Liquid-phase exfoliation (LPE) has been shown to be capable of producing large quantities of high-quality dispersions suitable for processing into subsequent applications. LPE typically requires surfactants for aqueous dispersions or organic solvents with high boiling point. However, they have major drawbacks such as toxicity, aggregation during solvent evaporation or the presence of residues. Here, dispersions of molybdenum disulfide in acetone are prepared and show much higher concentration and stability than predicted by Hansen parameter analysis. Aiming to understand those enhanced properties, the nanosheets were characterised using UV-visible spectroscopy, zeta potential measurements, atomic force microscopy, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and scanning transmission microscopy combined with spatially-resolved electron energy loss spectroscopy. Also, the performance of the MoS2 nanosheets exfoliated in acetone was compared to those exfoliated in isopropanol as a catalyst for the hydrogen evolution reaction. The conclusion from the chemical characterisation was that MoS2 nanosheets exfoliated in acetone have an oxygen edge-functionalisation, in the form of molybdenum oxides, changing its interaction with solvents and explaining the observed high-quality and stability of the resulting dispersion in a low boiling point solvent. Exfoliation in acetone could potentially be applied as a pretreatment to modify the solubility of MoS2 by edge-functionalisation

    Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal

    No full text
    In this work, graphene oxide (GO)−TiO2 nanocomposite was synthesized by in situ sol−gel reaction at pH=2 using GO nanosheets suspension and titanium isopropoxide precursor. The synthesized GO−TiO2 nanocomposite was explored as a filler to fabricate improved antifouling novel hybrid ultrafiltration membranes for removal of humic acid from aqueous solution. Membranes were fabricated from polymer blend solutions containing polysulfone and GO−TiO2 with varied loading amount (0–5wt%) by the non-solvent induced phase separation (NIPS) method. Contact angle, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and outer surface zeta potential studies were conducted in order to characterise the membranes in terms of roughness, structure, surface properties and charge. The porous hydrophilic hybrid membranes were shown to have an asymmetric structure with improved surface roughness. The water permeability and antifouling capacity of hybrid membranes with 10ppm HA solution were dependent on the loading amount of GO–TiO2. Incorporation of GO–TiO2 nanocomposite was found to improve the antifouling characteristics of the membranes when challenged with HA solutions. Irreversible HA fouling was substantially reduced with increased loading of GO−TiO2 nanocomposite (wt%). The lowest irreversible fouling ratio (3.2%) was obtained for the membrane containing 5wt% nanocomposite (to total wt% of PSf, MG−5). Ultrafiltration of HA solutions of varied concentrations using hybrid membranes was studied at pH=7 and 1bar feed pressure. The removal efficiency of hybrid membranes for HA was controlled by the membrane surface charge concentration, porosity and HA exclusion. The membrane MG−5 had the highest HA removal efficiency for 10ppm HA solution at pH=7. [Display omitted] ‱GO−TiO2 nanocomposite was synthesized via in situ sol–gel method at pH=2.‱Low fouling novel hybrid ultrafiltration membranes were fabricated by NIPS method.‱Membranes had improved ability to reduce irreversible HA fouling.‱Membranes were efficient in the removal of HA from 10 ppm solution

    Activated Graphene Oxide-Calcium Alginate Beads for Adsorption of Methylene Blue and Pharmaceuticals

    No full text
    The remarkable adsorption capacity of graphene-derived materials has prompted their examination in composite materials suitable for deployment in treatment of contaminated waters. In this study, crosslinked calcium alginate–graphene oxide beads were prepared and activated by exposure to pH 4 by using 0.1M HCl. The activated beads were investigated as novel adsorbents for the removal of organic pollutants (methylene blue dye and the pharmaceuticals famotidine and diclofenac) with a range of physicochemical properties. The effects of initial pollutant concentration, temperature, pH, and adsorbent dose were investigated, and kinetic models were examined for fit to the data. The maximum adsorption capacities qmax obtained were 1334, 35.50 and 36.35 mg g−1 for the uptake of methylene blue, famotidine and diclofenac, respectively. The equilibrium adsorption had an alignment with Langmuir isotherms, while the kinetics were most accurately modelled using pseudo- first-order and second order models according to the regression analysis. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated and the adsorption process was determined to be exothermic and spontaneous

    Defining Swelling Kinetics in Block Copolymer Thin Films: The Critical Role of Temperature and Vapour Pressure Ramp

    No full text
    We studied the kinetics of swelling in high-χ lamellar-forming poly(styrene)-block- poly(lactic acid) (PS-b-PLA) block copolymer (BCP) by varying the heating rate and monitoring the solvent vapour pressure and the substrate temperature in situ during solvo-thermal vapour annealing (STVA) in an oven, and analysing the resulting morphology. Our results demonstrate that there is not only a solvent vapour pressure threshold (120 kPa), but also that the rate of reaching this pressure threshold has a significant effect on the microphase separation and the resulting morphologies. To study the heating rate effect, identical films were annealed in a tetrahydrofuran (THF) vapour environment under three different ramp regimes, low (rT1 °C/min), medium (2rT3 °C/min) and high (rT>4 °C/min), for 60, 90 and 120 min, respectively, while the solvent vapour pressure and the substrate temperature were measured in real time. The translational order improved significantly with increasing the heating rate. The solvent mass uptake calculated for the different ramp regimes during annealing is linearly proportional to time, indicating that the swelling kinetics followed Case II diffusion. Two stages of the swelling behaviour were observed: (i) diffusion at the initial stages of swelling and (ii) stress relaxation, controlled at later stages. Films with a faster rate of increase in vapour pressure (rP>2 kPa/min) reached the pressure threshold value at an early stage of the swelling and attained a good phase separation. According to our results, highly ordered patterns are only obtained when the volume fraction of the solvent exceeds the polymer volume fraction, i.e., (φs≄φp), during the swelling process, and below this threshold value (φs=0.5), the films did not obtain a good structural order, even at longer annealing times

    Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness

    No full text
    Although many electrochemical properties of 2D materials depend sensitively on the nanosheet dimensions, there are no systematic, quantitative studies which analyze the effect of nanosheet size and thickness on electrochemical parameters. Here we use size-selected WS<sub>2</sub> nanosheets as a model system to determine the effect of nanosheet dimensions in two representative areas: hydrogen evolution electrocatalytic electrodes and electrochemical double layer capacitor electrodes. We chose these applications, as they depend on the interaction of ions with the nanosheet edge and basal plane, respectively, and so would be expected to be nanosheet-size-dependent. The data show the catalytic current density to scale inversely with mean nanosheet length while the volumetric double layer capacitance scales inversely with mean nanosheet thickness. Both of these results are consistent with simple models allowing use to extract intrinsic quantities, namely the turnover frequency and the double layer thickness, respectively
    • 

    corecore