24 research outputs found

    Coxiella burnetii Genotyping

    Get PDF
    Multispacer sequence typing is the first reliable method for typing Coxiella burnetii isolates

    Genomic analysis of an emerging multiresistant Staphylococcus aureus strain rapidly spreading in cystic fibrosis patients revealed the presence of an antibiotic inducible bacteriophage

    Get PDF
    BACKGROUND: Staphylococcus aureus is a major human pathogen responsible for a variety of nosocomial and community-acquired infections. Recent reports show that the prevalence of Methicillin-Resistant S. aureus (MRSA) infections in cystic fibrosis (CF) patients is increasing. In 2006 in Marseille, France, we have detected an atypical MRSA strain with a specific antibiotic susceptibility profile and a unique growth phenotype. Because of the clinical importance of the spread of such strain among CF patients we decided to sequence the genome of one representative isolate (strain CF-Marseille) to compare this to the published genome sequences. We also conducted a retrospective epidemiological analysis on all S. aureus isolated from 2002 to 2007 in CF patients from our institution. RESULTS: CF-Marseille is multidrug resistant, has a hetero-Glycopeptide-Intermediate resistance S. aureus phenotype, grows on Cepacia agar with intense orange pigmentation and has a thickened cell wall. Phylogenetic analyses using Complete Genome Hybridization and Multi Locus VNTR Assay showed that CF-Marseille was closely related to strain Mu50, representing vancomycin-resistant S. aureus. Analysis of CF-Marseille shows a similar core genome to that of previously sequenced MRSA strains but with a different genomic organization due to the presence of specific mobile genetic elements i.e. a new SCCmec type IV mosaic cassette that has integrated the pUB110 plasmid, and a new phage closely related to phiETA3. Moreover this phage could be seen by electron microscopy when mobilized with several antibiotics commonly used in CF patients including, tobramycin, ciprofloxacin, cotrimoxazole, or imipenem. Phylogenetic analysis of phenotypically similar h-GISA in our study also suggests that CF patients are colonized by polyclonal populations of MRSA that represents an incredible reservoir for lateral gene transfer. CONCLUSION: In conclusion, we demonstrated the emergence and spreading of a new isolate of MRSA in CF patients in Marseille, France, that has probably been selected in the airways by antibiotic pressure. Antibiotic-mediated phage induction may result in high-frequency transfer and the unintended consequence of promoting the spread of virulence and/or antibiotic resistance determinants. The emergence of well-adapted MRSA is worrying in such population chronically colonized and receiving many antibiotics and represents a model for emergence of uncontrollable super bugs in a specific niche. REVIEWERS: This article was reviewed by Eric Bapteste, Pierre Pontarotti, and Igor Zhulin. For the full reviews, please go to the Reviewers' comments section

    Viruses with More Than 1,000 Genes: Mamavirus, a New Acanthamoeba polyphaga mimivirus Strain, and Reannotation of Mimivirus Genes

    Get PDF
    The genome sequence of the Mamavirus, a new Acanthamoeba polyphaga mimivirus strain, is reported. With 1,191,693 nt in length and 1,023 predicted protein-coding genes, the Mamavirus has the largest genome among the known viruses. The genomes of the Mamavirus and the previously described Mimivirus are highly similar in both the protein-coding genes and the intergenic regions. However, the Mamavirus contains an extra 5′-terminal segment that encompasses primarily disrupted duplicates of genes present elsewhere in the genome. The Mamavirus also has several unique genes including a small regulatory polyA polymerase subunit that is shared with poxviruses. Detailed analysis of the protein sequences of the two Mimiviruses led to a substantial amendment of the functional annotation of the viral genomes

    The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life.

    Get PDF
    BackgroundA recent work has provided strong arguments in favor of a fourth domain of Life composed of nucleo-cytoplasmic large DNA viruses (NCLDVs). This hypothesis was supported by phylogenetic and phyletic analyses based on a common set of proteins conserved in Eukarya, Archaea, Bacteria, and viruses, and implicated in the functions of information storage and processing. Recently, the genome of a new NCLDV, Cafeteria roenbergensis virus (CroV), was released. The present work aimed to determine if CroV supports the fourth domain of Life hypothesis.MethodsA consensus phylogenetic tree of NCLDVs including CroV was generated from a concatenated alignment of four universal proteins of NCLDVs. Some features of the gene complement of CroV and its distribution along the genome were further analyzed. Phylogenetic and phyletic analyses were performed using the previously identified common set of informational genes present in Eukarya, Archaea, Bacteria, and NCLDVs, including CroV.FindingsPhylogenetic reconstructions indicated that CroV is clearly related to the Mimiviridae family. The comparison between the gene repertoires of CroV and Mimivirus showed similarities regarding the gene contents and genome organization. In addition, the phyletic clustering based on the comparison of informational gene repertoire between Eukarya, Archaea, Bacteria, and NCLDVs unambiguously classified CroV with other NCLDVs and clearly included it in a fourth domain of Life. Taken together, these data suggest that Mimiviridae, including CroV, may have inherited a common gene content probably acquired from a common Mimiviridae ancestor.ConclusionsThis further analysis of the gene repertoire of CroV consolidated the fourth domain of Life hypothesis and contributed to outline a functional pan-genome for giant viruses infecting phagocytic protistan grazers

    Prophage Genomics

    No full text
    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and Îł-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and Îł-proteobacteria

    Personal Cancer Genome Reporter: Variant interpretation report for precision oncology

    Get PDF
    Summary Individual tumor genomes pose a major challenge for clinical interpretation due to their unique sets of acquired mutations. There is a general scarcity of tools that can (i) systematically interrogate cancer genomes in the context of diagnostic, prognostic, and therapeutic biomarkers, (ii) prioritize and highlight the most important findings and (iii) present the results in a format accessible to clinical experts. We have developed a stand-alone, open-source software package for somatic variant annotation that integrates a comprehensive set of knowledge resources related to tumor biology and therapeutic biomarkers, both at the gene and variant level. Our application generates a tiered report that will aid the interpretation of individual cancer genomes in a clinical setting. Availability and implementation The software is implemented in Python/R, and is freely available through Docker technology. Documentation, example reports, and installation instructions are accessible via the project GitHub page: https://github.com/sigven/pcgr. Supplementary information Supplementary data are available at Bioinformatics online

    Personal Cancer Genome Reporter: Variant interpretation report for precision oncology

    Get PDF
    Individual tumor genomes pose a major challenge for clinical interpretation due to their unique sets of acquired mutations. There is a general scarcity of tools that can (i) systematically interrogate cancer genomes in the context of diagnostic, prognostic, and therapeutic biomarkers, (ii) prioritize and highlight the most important findings and (iii) present the results in a format accessible to clinical experts. We have developed a stand-alone, open-source software package for somatic variant annotation that integrates a comprehensive set of knowledge resources related to tumor biology and therapeutic biomarkers, both at the gene and variant level. Our application generates a tiered report that will aid the interpretation of individual cancer genomes in a clinical setting

    Broad Spectrum of Mimiviridae Virophage Allows Its Isolation Using a Mimivirus Reporter

    Get PDF
    <div><p>The giant virus Mimiviridae family includes 3 groups of viruses: group A (includes <i>Acanthamoeba polyphaga Mimivirus</i>), group B (includes Moumouvirus) and group C (includes <i>Megavirus chilensis</i>). Virophages have been isolated with both group A Mimiviridae (the Mamavirus strain) and the related Cafeteria roenbergensis virus, and they have also been described by bioinformatic analysis of the Phycodnavirus. Here, we found that the first two strains of virophages isolated with group A Mimiviridae can multiply easily in groups B and C and play a role in gene transfer among these virus subgroups. To isolate new virophages and their Mimiviridae host in the environment, we used PCR to identify a sample with a virophage and a group C Mimiviridae that failed to grow on amoeba. Moreover, we showed that virophages reduce the pathogenic effect of Mimivirus (plaque formation), establishing its parasitic role on Mimivirus. We therefore developed a co-culture procedure using <i>Acanthamoeba polyphaga</i> and Mimivirus to recover the detected virophage and then sequenced the virophage's genome. We present this technique as a novel approach to isolating virophages. We demonstrated that the newly identified virophages replicate in the viral factories of all three groups of Mimiviridae, suggesting that the spectrum of virophages is not limited to their initial host.</p> </div
    corecore