166 research outputs found

    Stimulation of the Na+/H+ exchanger in human endothelial cells activated by granulocyte- and granulocyte-macrophage-colony-stimulating factor. Evidence for a role in proliferation and migration.

    Get PDF
    It has been shown that human endothelial cells (HEC) are stimulated to migrate and proliferate by granulocyte (G)- and granulocyte-macrophage (GM)-colony-stimulating factor (CSF) (Bussolino, F., Wang, J. M., Defilipii, P. Turrini, F., Sanavio, F., Edgell, C.-J. S., Aglietta, M., Arese, P., and Mantovani, A. (1989) Nature 337, 471-473). The rapid intracellular events initiated by these cytokines on binding to their receptors on HEC are not defined. Addition of G- or GM-CSF to HEC produced a rapid activation of Na+/H+ exchanger resulting in an increase in intracellular pH (pHi). Both cytokines induced an alkaline displacement in the pHi dependence of the exchanger without affecting the affinity for external Na+ (Nao) and the rate of exchanger. Ethylisopropylamiloride, a selective inhibitor of the Na+/H+ exchanger, inhibited the intracellular alkalinization, the migration, and proliferation induced by G- and GM-CSF. The data indicate that G- and GM-CSF initiate a rapid exchange of Na+ and H+ by means of the Na+/H+ exchanger and that this ethylisopropylamiloride-sensitive ions flux is important to the biological effects of these cytokines on HEC

    Pituitary hypoplasia and growth hormone deficiency in a woman with glycogen storage disease type Ia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Growth retardation is one of the cardinal manifestations of glycogen storage disease type Ia. It is unclear which component of the growth hormone and/or insulin-like growth factor axis is primarily disrupted, and management of growth impairment in these patients remains controversial. Here we report the first case in the literature where glycogen storage disease type Ia is associated with pituitary hypoplasia and growth hormone deficiency.</p> <p>Case presentation</p> <p>A 20-year-old woman with glycogen storage disease type Ia was admitted to our endocrinology department because of growth retardation. Basal and overnight growth hormone sampling at 2-hour intervals demonstrated low levels; however, provocative testing revealed a relatively normal growth hormone response. A hypoplastic anterior pituitary with preserved growth hormone response to provocative testing suggested the possibility of growth hormone neurosecretory dysfunction and/or primary pituitary involvement.</p> <p>Conclusion</p> <p>Pituitary hypoplasia may result from growth hormone-releasing hormone deficiency, a condition generally known as growth hormone neurosecretory dysfunction. It is an abnormality with a spontaneous and pulsatile secretion pattern, characterized by short stature, growth retardation and normal serum growth hormone response to provocative testing. However, in the case described in this report, a normal although relatively low growth hormone response during insulin tolerance testing and pituitary hypoplasia suggested that primary pituitary involvement or growth hormone neurosecretory dysfunction may occur in glycogen storage disease type Ia. This is a potential cause of growth failure associated with a lower somatotroph mass, and may explain the variable responsiveness to growth hormone replacement therapy in people with glycogen storage disease.</p

    Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise.

    Get PDF
    Sprint interval exercise improves several health markers but the appetite and energy balance response is unknown. This study compared the effects of sprint interval and endurance exercise on appetite, energy intake and gut hormone responses. Twelve healthy males [mean (SD): age 23 (3) years, body mass index 24.2 (2.9) kg m(-2), maximum oxygen uptake 46.3 (10.2) mL kg(-1) min(-1)] completed three 8 h trials [control (CON), endurance exercise (END), sprint interval exercise (SIE)] separated by 1 week. Trials commenced upon completion of a standardised breakfast. Sixty minutes of cycling at 68.1 (4.3) % of maximum oxygen uptake was performed from 1.75-2.75 h in END. Six 30-s Wingate tests were performed from 2.25-2.75 h in SIE. Appetite ratings, acylated ghrelin and peptide YY (PYY) concentrations were measured throughout each trial. Food intake was monitored from buffet meals at 3.5 and 7 h and an overnight food bag. Appetite (P 0.05). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in END than that in CON (15.7 %; P = 0.006) and SIE (11.5 %; P = 0.082). An acute bout of endurance exercise resulted in lower appetite perceptions in the hours after exercise than sprint interval exercise and induced a greater 24 h energy deficit due to higher energy expenditure during exercise

    Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response

    Get PDF
    Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts

    Biofilm Induced Tolerance towards Antimicrobial Peptides

    Get PDF
    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms

    A Global Metabolic Shift Is Linked to Salmonella Multicellular Development

    Get PDF
    Bacteria can elaborate complex patterns of development that are dictated by temporally ordered patterns of gene expression, typically under the control of a master regulatory pathway. For some processes, such as biofilm development, regulators that initiate the process have been identified but subsequent phenotypic changes such as stress tolerance do not seem to be under the control of these same regulators. A hallmark feature of biofilms is growth within a self-produced extracellular matrix. In this study we used metabolomics to compare Salmonella cells in rdar colony biofilms to isogenic csgD deletion mutants that do not produce an extracellular matrix. The two populations show distinct metabolite profiles. Even though CsgD controls only extracellular matrix production, metabolite signatures associated with cellular adaptations associated with stress tolerances were present in the wild type but not the mutant cells. To further explore these differences we examine the temporal gene expression of genes implicated in biofilm development and stress adaptations. In wild type cells, genes involved in a metabolic shift to gluconeogenesis and various stress-resistance pathways exhibited an ordered expression profile timed with multicellular development even though they are not CsgD regulated. In csgD mutant cells, the ordered expression was lost. We conclude that the induction of these pathways results from production of, and growth within, a self produced matrix rather than elaboration of a defined genetic program. These results predict that common physiological properties of biofilms are induced independently of regulatory pathways that initiate biofilm formation

    Progressive dementia associated with ataxia or obesity in patients with Tropheryma whipplei encephalitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tropheryma whipplei</it>, the agent of Whipple's disease, causes localised infections in the absence of histological digestive involvement. Our objective is to describe <it>T. whipplei </it>encephalitis.</p> <p>Methods</p> <p>We first diagnosed a patient presenting dementia and obesity whose brain biopsy and cerebrospinal fluid specimens contained <it>T. whipplei </it>DNA and who responded dramatically to antibiotic treatment. We subsequently tested cerebrospinal fluid specimens and brain biopsies sent to our laboratory using <it>T. whipplei </it>PCR assays. PAS-staining and <it>T. whipplei </it>immunohistochemistry were also performed on brain biopsies. Analysis was conducted for 824 cerebrospinal fluid specimens and 16 brain biopsies.</p> <p>Results</p> <p>We diagnosed seven patients with <it>T. whipplei </it>encephalitis who demonstrated no digestive involvement. Detailed clinical histories were available for 5 of them. Regular PCR that targeted a monocopy sequence, PAS-staining and immunohistochemistry were negative; however, several highly sensitive and specific PCR assays targeting a repeated sequence were positive. Cognitive impairments and ataxia were the most common neurologic manifestations. Weight gain was paradoxically observed for 2 patients. The patients' responses to the antibiotic treatment were dramatic and included weight loss in the obese patients.</p> <p>Conclusions</p> <p>We describe a new clinical condition in patients with dementia and obesity or ataxia linked to <it>T. whipplei </it>that may be cured with antibiotics.</p

    Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    Get PDF
    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions

    Towards a Processual Microbial Ontology

    Get PDF
    types: ArticleStandard microbial evolutionary ontology is organized according to a nested hierarchy of entities at various levels of biological organization. It typically detects and defines these entities in relation to the most stable aspects of evolutionary processes, by identifying lineages evolving by a process of vertical inheritance from an ancestral entity. However, recent advances in microbiology indicate that such an ontology has important limitations. The various dynamics detected within microbiological systems reveal that a focus on the most stable entities (or features of entities) over time inevitably underestimates the extent and nature of microbial diversity. These dynamics are not the outcome of the process of vertical descent alone. Other processes, often involving causal interactions between entities from distinct levels of biological organisation, or operating at different time scales, are responsible not only for the destabilisation of pre-existing entities, but also for the emergence and stabilisation of novel entities in the microbial world. In this article we consider microbial entities as more or less stabilised functional wholes, and sketch a network-based ontology that can represent a diverse set of processes including, for example, as well as phylogenetic relations, interactions that stabilise or destabilise the interacting entities, spatial relations, ecological connections, and genetic exchanges. We use this pluralistic framework for evaluating (i) the existing ontological assumptions in evolution (e.g. whether currently recognized entities are adequate for understanding the causes of change and stabilisation in the microbial world), and (ii) for identifying hidden ontological kinds, essentially invisible from within a more limited perspective. We propose to recognize additional classes of entities that provide new insights into the structure of the microbial world, namely ‘‘processually equivalent’’ entities, ‘‘processually versatile’’ entities, and ‘‘stabilized’’ entities.Economic and Social Research Council, U

    Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner

    Get PDF
    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection
    corecore