7 research outputs found

    Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    Get PDF
    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes

    Permanent Draft Genome Sequence of Photorhabdus temperata Strain Hm, an Entomopathogenic Bacterium Isolated from Nematodes

    Get PDF
    Photorhabdus temperata strain Hm is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. Here, we report a 5.0-Mbp draft genome sequence for P. temperata strain Hm with a G+C content of 44.1% and containing 4,226 candidate protein-encoding genes

    Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt

    Get PDF
    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes

    Draft Genome Sequence of Photorhabdus temperata Strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes

    Get PDF
    Photorhabdus temperata strain Meg1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 4.9-Mbp draft genome sequence for P. temperata strain Meg1, with a G+C content of 43.18% and containing 4,340 candidate protein-coding genes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Comparative genomics of Prauserella sp. Am3, an actinobacterium isolated from root nodules of Alnus nepalensis in India

    No full text
    A novel actinomycete strain, assigned as Am3, was isolated from the root nodules of Alnus nepalensis at Mirik hills, India. Analysis of the 16s rRNA gene sequence placed this new strain within the genus Prauserella. The genome was sequenced by Illumina sequencing and resulting 5.33-Mbp high quality draft genome sequenced with a G + C content of 70.0 % and 4828 candidate protein-encoding genes. Phylogenetically, Prauserella clusters very close to Amycolatopsis and was previously placed under the genus Amycolatopsis. Our main focus was to reveal the genomic similarities and dissimilarities of the newly sequenced Prauserella sp. Am3 with the type strain, Prauserella rugosa DSM 43194 T, and to determine its relationship with Amycolatopsis, which is happened to be the closest genus of Prauserella. Taking an in silico approach, bioinformatic analysis revealed that the core genome of Amycolatopsis and Prauserella contained 1589 genes. The two Prauserella genomes shared approximately 4224 genes, and 237 and 245 unique genes were found in the P. rugosa and Prauserella sp. Am3 genomes, respectively. Analysis of various phylogenetic trees including a 16s rRNA gene tree, MLSA protein-based tree and concatenated core-genome-based tree, placed both Prauserella genomes together with Amycolatopsis halophila YIM 93233 as its closest neighbor. Blast Matrix analysis of the predicted proteomes revealed about 86 % homology between the two Prauserella genomes. Analysis of the strand variation property revealed the absence of replication-transcriptional selection. Overall, a high degree of similarity was found between the two Prauserella genomes and a high percentage of similarity occurred among the Prauserella genomes and Amycolatopsis halophila

    Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes

    No full text
    Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus . Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA–DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus , Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis . Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis ) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis )
    corecore