491 research outputs found

    Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses

    Get PDF
    Here, the contribution of stomatal and nonstomatal factors to photosynthetic inhibition under water stress in four tropical C(4) grasses was investigated (Panicum coloratum, Bothriochloa bladhii, Cenchrus ciliaris and Astrebla lappacea ). Plants were grown in well watered soil, and then the effects of soil drying were measured on leaf gas exchange, chlorophyll a fluorescence and water relations. During the drying cycle, leaf water potential (Psi(leaf)) and relative water content (RWC) decreased from c. -0.4 to -2.8 MPa and 100-40%, respectively. The CO(2) assimilation rates (A) and quantum yield of PSII (Phi(PSII)) of all four grasses decreased rapidly with declining RWC. High CO(2) concentration (2500 mul l(-1)) had no effect on A or Phi(PSII) at any stage of the drying cycle. Electron transport capacity and dark respiration rates were unaltered by drought. The CO(2) compensation concentrations of P. coloratum and C. ciliaris rose sharply when leaf RWC fell below 70%. In P. coloratum, 5% CO(2) did not prevent the decline of O(2) evolution rates under water stress. We conclude that inhibition of photosynthesis in the four C(4) grasses under water stress is dependent mainly on biochemical limitations

    Light‐limited photosynthesis under energy‐saving film decreases eggplant yield

    Get PDF
    Glasshouse films with adjustable light transmittance and energy‐efficient designs have the potential to reduce (up to 80%) the high energy cost for greenhouse horticulture operations. Whether these films compromise the quantity and quality of light transmission for photosynthesis and crop yield remains unclear. A “Smart Glass” film ULR‐80 (SG) was applied to a high‐tech greenhouse horticulture facility, and two experimental trials were conducted by growing eggplant (Solanum melongena) using commercial vertical cultivation and management practices. SG blocked 85% of ultraviolet (UV), 58% of far‐red, and 26% of red light, leading to an overall reduction of 19% in photosynthetically active radiation (PAR, 380–699 nm) and a 25% reduction in total season fruit yield. There was a 53% (season mean) reduction in net short‐wave radiation (radiometer range, 385–2,105 nm upward; 295–2,685 nm downward) that generated a net reduction of 8% in heat load and reduced water and nutrient consumption by 18%, leading to improved energy and resource use efficiency. Eggplant adjusted to the altered SG light environment via decreased maximum light‐saturated photosynthetic rates (Amax) and lower xanthophyll de‐epoxidation state. The shift in light characteristics under SG led to reduced photosynthesis, which may have reduced source (leaf) to sink (fruit) carbon distribution, increased fruit abortion and decreased fruit yield, but did not affect nutritional quality. We conclude that SG increases energy and resource use efficiency, without affecting fruit quality, but the reduction in photosynthesis and eggplant yield is high. The solution is to re‐engineer the SG to increase penetration of UV and PAR, while maintaining blockage of glasshouse heat gain

    C4 photosynthesis boosts growth by altering physiology, allocation and size.

    Get PDF
    C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications

    The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn’s Disease–Like Ileitis

    Get PDF
    We thank John D. Ward and Lindsey N. Kaydo for their technical support and Dr. Wei Xin for the histological scoring of ileitis severity. ARP is an Assistant Professor of Medicine at CWRU School of Medicine. Metagenomic sequencing was conducted in the laboratory of Dr. Skip Virgin at Washington University, School of Medicine, St. Louis, MO. Raw sequencing data files will be available upon request.Peer reviewedPostprin

    Photosynthesis by six portuguese maize cultivars during drought stress and recovery

    Get PDF
    Photosynthesis, chlorophyll fluorescence and leaf water parameters were measured in six Portuguese maize (Zea mays L.) cultivars during and following a period of drought stress. The leaf relative water content (RWC) responded differently among cultivars but, except for cultivar PB369, recovered close to initial values after watering was restored. Photosynthetic rate and stomatal conductance decreased with drought but more slowly in cultivars PB269 and PB260 than in cultivars AD3R, PB64, PB304 and PB369. Water use efficiency (WUE) decreased during the water stress treatment although with cultivar PB260 the decrease was marked only when the RWC fell below 40%. Recovery of WUE was seen with all cultivars except PB369. The maximum quantum efficiency of photosystem II, the photochemical quenching coefficient, the electron transport rate in PSII and the estimated functional plastoquinone pool tended to decrease with drought, while the non -photochemical quenching coefficient increased. The parameters estimated from chlorophyll fluorescence did not recover in PB369, during re - watering. The results show that PB260 and PB269 were the most tolerant and PB369 was the least tolerant cultivars to water stress. The variation found amongst the cultivars tested suggests the existence of valuable genetic resources for crop improvement in relation to drought tolerance

    Oral shedding of herpesviruses in HIV-infected patients with varying degrees of immune status

    Get PDF
    Objective: Herpesvirus shedding in the oral cavity was analyzed to determine if presence in the oral compartment correlates with systemic changes in HIV-associated immune deficiency as measured by CD4 + cell counts, plasma HIV viral load and presence of AIDS-defining events. Design: A5254 is a multicenter, cross-sectional, single-visit study to evaluate oral complications of HIV/AIDS and determine the association between clinical appearance, herpesvirus shedding, and immune status as ascertained by CD4 + cell count and HIV viral load. In total, 307 HIV-infected individuals were evaluated and throat wash collected. Methods: Fisher's exact test and Kruskal-Wallis test were used to assess the association between presence of herpesviruses and the state of immunodeficiency as stratified by a combination of CD4 + cell count and HIV viral load. Relationship between pathogens and HIV viral load in plasma was modeled by logistic regression. Results: The presence of cytomegalovirus (CMV) and herpes simplex virus-1 in throat wash was associated with decreased CD4 + cell counts. By contrast, Kaposi sarcoma-associated herpesvirus and Epstein-Barr virus were similarly detectable across all levels of CD4 + cell counts. One unit increase in log 10 (HIV viral load) was associated with 1.31 times higher odds of detecting CMV in throat wash when controlling for oral candidiasis, CD4 + cell count, and sites (95% confidence interval 1.04-1.65, P=0.02). Conclusion: Oral CMV shedding was significantly higher in highly immunocompromised HIV + participants. Our finding supports the recommendations to start antiretroviral therapy independent of CD4 + cell count as this may have the added benefit to lower the risk of herpesvirus transmission among persons infected with HIV and their partners

    Variation in carbon isotope discrimination in Cleistogenes squarrosa (Trin.) Keng: patterns and drivers at tiller, local, catchment, and regional scales

    Get PDF
    Understanding the patterns and drivers of carbon isotope discrimination in C4 species is critical for predicting the effects of global change on C3/C4 ratio of plant community and consequently on ecosystem functioning and services. Cleistogenes squarrosa (Trin.) Keng is a dominant C4 perennial bunchgrass of arid and semi-arid ecosystems across the Mongolian plateau of the Eurasian steppe. Its carbon isotope discrimination (13Δ) during photosynthesis is relatively large among C4 species and it is variable. Here the 13Δ of C. squarrosa and its potential drivers at a nested set of scales were examined. Within cohorts of tillers, 13Δ of leaves increased from 5.1‰ to 8.1‰ from old to young leaves. At the local scale, 13Δ of mature leaves varied from 5.8‰ to 8.4‰, increasing with decreasing grazing intensity. At the catchment scale, 13Δ of mature leaves varied from 6.2‰ to 8.5‰ and increased with topsoil silt content. At the regional scale, 13Δ of mature leaves varied from 5.5‰ to 8.9‰, increasing with growing-season precipitation. At all scales, 13Δ decreased with increasing leaf nitrogen content (Nleaf). Nleaf was positively correlated with grazing intensity and leaf position along tillers, but negatively correlated with precipitation. The presence of the correlations across a range of different environmental contexts strongly implicates Nleaf as a major driver of 13Δ in C. squarrosa and, possibly, other C4 species

    Differential adherence and expression of virulence traits by Candida albicans and Candida parapsilosis in mono- and dual-species cultures in artificial saliva

    Get PDF
    AIMS: To evaluate specific virulence factors of Candida albicans and Candida parapsilosis clinical oral isolates in mono- and dual-species culture in the presence of artificial saliva. METHODS AND RESULTS: Two of the strains used in this study were isolated from co-infection (C. albicans AM and C. parapsilosis AM2), and the other two were isolated from single infection (C. albicans AC and C. parapsilosis AD). The number of adhered yeast cells was measured and their enzymatic activity was determined simultaneously. In mono-species culture, C. parapsilosis strains adhered to a higher extent to the surface in comparison with the C. albicans strains. In dual-species culture, the C. parapsilosis strains adhered more in the presence of C. albicans AM. Interestingly, C. albicans AM and C. parapsilosis AD adhered to a higher extent when compared with all other co-cultures. In dual-species culture, the enzymatic activity of C. parapsilosis strains in the presence of C. albicans AC was higher than in the presence of C. albicans AM. CONCLUSIONS: The virulence factors of C. albicans and C. parapsilosis differ from strain to strain and are influenced by the presence of other species in culture. SIGNIFICANCE AND IMPACT OF THE STUDY: To understand the expression of virulence factors in Candida dual-species systems.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grant SFRH/BPD/20987/2004 attributed to Claudia Botelho

    Quantitative and Qualitative Analysis of the Antifungal Activity of Allicin Alone and in Combination with Antifungal Drugs

    Get PDF
    The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB) were investigated in Candida albicans (C. albicans). C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine). After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine) in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes). Classification of cells according to their cell death phase (CDP) allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy
    corecore