674 research outputs found

    Pancancer analysis of DNA methylation-driven genes using MethylMix.

    Get PDF
    Aberrant DNA methylation is an important mechanism that contributes to oncogenesis. Yet, few algorithms exist that exploit this vast dataset to identify hypo- and hypermethylated genes in cancer. We developed a novel computational algorithm called MethylMix to identify differentially methylated genes that are also predictive of transcription. We apply MethylMix to 12 individual cancer sites, and additionally combine all cancer sites in a pancancer analysis. We discover pancancer hypo- and hypermethylated genes and identify novel methylation-driven subgroups with clinical implications. MethylMix analysis on combined cancer sites reveals 10 pancancer clusters reflecting new similarities across malignantly transformed tissues

    Protein processing characterized by a gel-free proteomics approach

    Get PDF
    We describe a method for the specific isolation of representative N-terminal peptides of proteins and their proteolytic fragments. Their isolation is based on a gel-free, peptidecentric proteomics approach using the principle of diagonal chromatography. We will indicate that the introduction of an altered chemical property to internal peptides holding a free α-N-terminus results in altered column retention of these peptides, thereby enabling the isolation and further characterization by mass spectrometry of N-terminal peptides. Besides pointing to changes in protein expression levels when performing such proteome surveys in a differential modus, protease specificity and substrate repertoires can be allocated since both are specified by neo-N-termini generated after a protease cleavage event. As such, our gel-free proteomics technology is widely applicable and amenable for a variety of proteome-driven protease degradomics research

    Porcine-derived collagen peptides promote re-epithelialisation through activation of integrin signalling

    Get PDF
    \ua9 2024 The Authors. Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2β1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin β1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds

    Improved Microarray-Based Decision Support with Graph Encoded Interactome Data

    Get PDF
    In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG), protein-protein interactions (OPHID) and miRNA-gene targeting (microRNA.org) outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method

    Comparative study of concatemer efficiency as an isotope-labelled internal standard for allergen quantification

    Get PDF
    Mass spectrometry-based methods coupled with stable isotope dilution have become effective and widely used methods for the detection and quantification of food allergens. Current methods target signature peptides resulting from proteolytic digestion of proteins of the allergenic ingredient. The choice of appropriate stable isotope-labelled internal standard is crucial, given the diversity of encountered food matrices which can affect sample preparation and analysis. We propose the use of concatemer, an artificial and stable isotope-labelled protein composed of several concatenated signature peptides as internal standard. With a comparative analysis of three matrices contaminated with four allergens (egg, milk, peanut, and hazelnut), the concatemer approach was found to offer advantages associated with the use of labelled proteins, ideal but unaffordable, and circumvent certain limitations of traditionally used synthetic peptides as internal standards. Although used in the proteomic field for more than a decade, concatemer strategy has not yet been applied for food analysis

    Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau

    Get PDF
    Synaptic dysfunction is an early pathological feature of neurodegenerative diseases associated with Tau, including Alzheimer's disease. Interfering with early synaptic dysfunction may be therapeutically beneficial to prevent cognitive decline and disease progression, but the mechanisms underlying synaptic defects associated with Tau are unclear. In disease conditions, Tau mislocalizes into pre- and postsynaptic compartments; here we show that, under pathological conditions, Tau binds to presynaptic vesicles in Alzheimer's disease patient brain. We define that the binding of Tau to synaptic vesicles is mediated by the transmembrane vesicle protein Synaptogyrin-3. In fly and mouse models of Tauopathy, reduction of Synaptogyrin-3 prevents the association of presynaptic Tau with vesicles, alleviates Tau-induced defects in vesicle mobility, and restores neurotransmitter release. This work therefore identifies Synaptogyrin-3 as the binding partner of Tau on synaptic vesicles, revealing a new presynapse-specific Tau interactor, which may contribute to early synaptic dysfunction in neurodegenerative diseases associated with Tau

    Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells.

    Get PDF
    Membrane protein insertion is an essential cellular process. The broad biophysical and topological range of membrane proteins necessitates multiple insertion pathways, which remain incompletely defined. Here, we have discovered a new membrane protein insertion pathway, identified the class of substrates it handles, explained why other known pathways do not work for these substrates and reconstituted the pathway using purified components

    Allergic respiratory disease care in the COVID-19 era : a EUFOREA statement

    Get PDF
    Spring and Summer 2020 are unique in that the challenges of care for those suffering from pollen allergy coincide with the COVID-19 pandemic. Several considerations are important to allow optimal care of allergic rhinitis (AR) and asthma and hence prevention of coronavirus spread through sneezing, rhinorrhoea, and coughing. This compact overview of recommendations by the EUFOREA expert teams on allergic airway diseases and allergen-specific immunotherapy (AIT) is based on investigation of the current COVID-19 literature in association with the key words above and shared clinical experience of the experts involved. It deals with similarities and differences between AR and coronavirus infection, specific recommendations for allergic disease care in the COVID-19 era, including guidance on AIT
    • …
    corecore