121 research outputs found

    Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species

    Get PDF
    Stable carbon and oxygen isotope ratios of raw pollen sampled from nine abundant tree species growing in natural habitats of central and northern Europe were investigated to understand the intra- and inter-specific variability of pollen-isotope values. All species yielded specific δ13Cpollen and δ18Opollen values and patterns, which can be ascribed to their physiology and habitat preferences. Broad-leaved trees flowering early in the year before leaf proliferation (Alnus glutinosa and Corylus avellana) exhibited on average 2.6‰ lower δ13Cpollen and 3.1‰ lower δ18Opollen values than broad-leaved and coniferous trees flowering during mid and late spring (Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). Mean species-specific δ13Cpollen values did not change markedly over time, whereas δ18Opollen values of two consecutive years were often statistically distinct. An intra-annual analysis of B. pendula and P. sylvestris pollen revealed increasing δ18Opollen values during the final weeks of pollen development. However, the δ13Cpollen values remained consistent throughout the pollen-maturation process. Detailed intra-individual analysis yielded circumferential and height-dependent variations within carbon and oxygen pollen-isotopes and the sampling position on a tree accounted for differences of up to 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen. A comparison of isotope ranges from different geographic settings revealed gradients between maritime and continental as well as between high and low altitudinal study sites. The results of stepwise regression analysis demonstrated, that carbon and oxygen pollen-isotopes also reflect local non-climate environmental conditions. A detailed understanding of isotope patterns and ranges in modern pollen is necessary to enhance the accuracy of palaeoclimate investigations on δ13C and δ18O of fossil pollen. Furthermore, pollen-isotope values are species-specific and the analysis of species growing during different phenophases may be valuable for palaeoweather reconstructions of different seasons

    Quantifying the impact of chemicals on stable carbon and oxygen isotope values of raw pollen

    Get PDF
    Purification protocols to extract pollen from lake sediments contain chemicals that alter the carbon and oxygen pollen‐isotope values according to pollen characteristics and family affiliation. Modern (raw) pollen of broad‐leaved (Alnus glutinosa, Betula pendula, Carpinus betulus, Corylus avellana, Fagus sylvatica and Quercus robur) and coniferous tree species (Picea abies and Pinus sylvestris) were treated with potassium hydroxide (KOH), hydrofluoric acid (HF), sodium hypochlorite (NaClO) and sulphuric acid (H2SO4) to test the impact on δ13Cpollen and δ18Opollen and assess the applicability in purification protocols. Pollen of broad‐leaved and coniferous trees reacted differently to chemical exposure, but response patterns are generally alike. Alterations of δ13Cpollen values vary between + 1.0‰ (B. pendula, NaClO‐treatment) and −5.0‰ (P. sylvestris, H2SO4‐treatment). The δ13Cpollen values of raw and chemically treated samples seem to be related after treatments with KOH, NaClO and HF, whereas the application of H2SO4 led to inconsistent changes among species. The impact of chemicals on δ18Opollen are more diverse and offsets range between +1.1‰ (C. avellana, NaClO‐treatment) and −17.9‰ (P. sylvestris, H2SO4‐treatment). In general, the use of isotope‐altering chemicals in purification protocols should be brought to a minimum, but the application of KOH and NaClO seems mostly unproblematic before δ13Cpollen and δ18Opollen analysis

    Carbon and oxygen dual-isotopes indicate alternative physiological mechanisms opted by European beech trees to survive drought stress

    Get PDF
    Poor drought tolerance of European beech trees raised concerns in Europe. We hypothesized that beech could show an opposite physiological response to the same level of climatic drought with change in edaphic drought. We performed a combined analysis of δ13^{13}C and δ18^{18}O in tree rings to reveal retrospective temporal physiological responses of trees to drought. The edaphic drought was assessed by quantifying the capacity of soil to store water in plots (classified as “dry” and “less-dry”) near the drought limit of the species in three near-natural oak-beech ecotones in Germany and Switzerland. Neighbourhood competition was quantified. A climatic drought index was calculated from meteorological records and related to the δ13^{13}C and δ18^{18}O values of the trees. Trees from dry plots showed a higher response to drought and climatic dependency than less-dry plots. Neighbourhood competetion increased δ18^{18}O values significantly. Dual isotope analysis shows a tendency of greater stomatal resistance in dry plots and higher stomatal conductance in less-dry plots. We conclude that beech trees belonging to the same population under changing soil water availability can show different physiological responses under climatic drought stress. Our finding indicates the high plasticity of the beech trees to survive drought stress with changing site conditions

    PCDD/F, PCB and HCB in Soil and Ash from Brick Production Sites in Kenya, South Africa and Mexico

    Get PDF
    The implementation of the Stockholm Convention implies the generation of national emission inventories for Dioxins and Furans. So far little is known about the emissions from processes typically applied in Developing countries. Among the processes with a high activity and a high pollution potential (since wastes are often co-incinerated) is brick making. In the follow up of emission measurements at brick kilns in Mexico (MX) soil and bottom ashes were collected around these sites and compared to samples from brick making sites in South Africa (SA) and Kenya (KY) . Through the comparison of the impact on the nearby environment we tried to verify, whether the Emission Factors obtained from the measurements in Mexico can be applied to other regions where no measurements are available and where no adequate infrastructure exists to conduct. The levels in soil and ash were low in SA and KY (wood and coal fired kilns) and at a comparable level to the MX sites where virgin wood or LPG was used. The soils around waste derived fuel fired kilns in MX were somewhat higher, but still at levels that can e found in rural environments of the Northern Hemisphere. Apart from the overall confirmation of the applicability of the emission factors obtained from the study in MX, the very low level in the background soils investigated confirms the global North/South gradient of POPs pollution.JRC.H.1-Water Resource

    Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Arizona Board of Regents on behalf of the University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 58 (2016): 709-733, doi: 10.1017/RDC.2016.86.The Last Glacial-Interglacial Transition (LGIT; 15,000-11,000 cal BP) was characterized by complex spatiotemporal patterns of climate change, with numerous studies requiring accurate chronological control to decipher leads from lags in global paleoclimatic, -environmental and archaeological records. However, close scrutiny of the few available tree-ring chronologies and 14C-dated sequences composing the IntCal13 radiocarbon calibration curve, indicates significant weakness in 14C calibration across key periods of the LGIT. Here, we present a decadally-resolved atmospheric 14C record derived from New Zealand kauri spanning the Lateglacial from ~13,100 - 11,365 cal BP. Two floating kauri 14C time series, curve-matched to IntCal13, serve as a radiocarbon backbone through the Younger Dryas. The floating Northern Hemisphere (NH) 14C datasets derived from the YD-B and Central European Lateglacial Master tree-ring series are matched against the new kauri data, forming a robust NH 14C time series to ~14,200 cal BP. Our results show that IntCal13 is questionable from ~12,200 - 11,900 cal BP and the ~10,400 BP 14C plateau is approximately five decades too short. The new kauri record and re-positioned NH pine 14C series offer a refinement of the international 14C calibration curves IntCal13 and SHCal13, providing increased confidence in the correlation of global paleorecords.This work was part funded by the Foundation for Research, Science and Technology (FRST)—now Ministry for Business, Innovation & Employment (MBIE)-PROP-20224-SFK-UOA), a Royal Society of New Zealand grant, the Australian Research Council (FL100100195 and DP0664898) and the Natural Environment Research Council (NE/H009922/1, NE/I007660/1, NER/A/S/2001/01037 and NE/H007865/1)

    The Changing Amazon Hydrological Cycle—Inferences From Over 200 Years of Tree‐Ring Oxygen Isotope Data

    Get PDF
    Changes to the Amazon hydrological cycle have important consequences for world's largest tropical forest, and the biodiversity it contains. However, a scarcity of long-term climate data in the region makes it hard to contextualize recent observed changes in Amazon hydrology. Here, we explore to what extent tree-ring oxygen isotope (δ18OTR) chronologies can inform us about hydrological changes in the Amazon over the past two centuries. Two δ18OTR records from northern Bolivia and the Ecuadorian Andes are presented. The Ecuador record spans 1799–2012 (n = 16 trees) and the Bolivia record spans 1860–2014 (n = 32 trees), making them the longest δ18OTR records from the Amazon, and among the most highly-replicated δ18OTR records from the tropics to date. The two chronologies correlate well at interannual and decadal timescales, despite coming from sites more than 1,500 km apart. Both δ18OTR records are strongly related to interannual variation in Amazon River discharge measured at Óbidos, and accumulated upwind precipitation, suggesting a common climatic driver. In both records a strong increase in δ18OTR was observed up until approximately 1950, consistent with positive trends in the few other existing δ18O proxy records from across the Amazon. Considering all possible drivers of this long-term increase, a reduction in rainout fraction over the basin driven by rising sea surface temperatures in the North Atlantic is suggested as the most likely cause. The upward trend in δ18OTR reverses over the past 1–2 decades, consistent with the observed strengthening of the Amazon hydrological cycle since approximately 1990

    The unknown third – Hydrogen isotopes in tree-ring cellulose across Europe

    Get PDF
    This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions

    Punctuated shutdown of Atlantic Meridional Overturning circulation during Greenland Stadial 1

    Get PDF
    The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runof that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the ‘bipolar seesaw’). Here we exploit sub-fossil New Zealand kauri trees to report the frst securely dated, decadally-resolved atmospheric radiocarbon (¹⁴C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring ¹⁴C records with marine ¹⁴C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric ¹⁴C ofset was close to zero prior to GS-1, before reaching ‘near-modern’ values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our fndings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes
    corecore