60 research outputs found

    BIM Role within the Conceptual Design Phase: A Case Study of a UK Construction Project

    Get PDF
    The application of building information modelling (BIM) during the construction cycle of any development varies. Systematically, the way BIMā€™s applied during the initial phase will have a direct influence on phases that follow afterwards. Previous research focused on the application of BIM and concentrated on various aspects, which included sustainability or how to overcome the loss of data/information. However, it limited its focus on the application during a specific phase of the project. Analysis outlined both the benefits and barriers of applying BIM during the conceptual design phase. The study suggests that an informed evaluation of the application of BIM during any particular phase should take in consideration different stakeholdersā€™ roles and responsibilities

    Interventricular Differences in Ī²ā€Adrenergic Responses in the Canine Heart: Role of Phosphodiesterases

    Get PDF
    Background RV and LV have different embryologic, structural, metabolic, and electrophysiologic characteristics, but whether interventricular differences exist in Ī²ā€adrenergic (Ī²ā€AR) responsiveness is unknown. In this study, we examine whether Ī²ā€AR response and signaling differ in right (RV) versus left (LV) ventricles. Methods and Results Sarcomere shortening, Ca2+ transients, ICa,L and IKs currents were recorded in isolated dog LV and RV midmyocytes. Intracellular [cAMP] and PKA activity were measured by live cell imaging using FRETā€based sensors. Isoproterenol increased sarcomere shortening ā‰ˆ10ā€fold and Ca2+ā€transient amplitude ā‰ˆ2ā€fold in LV midmyocytes (LVMs) versus ā‰ˆ25ā€fold and ā‰ˆ3ā€fold in RVMs. FRET imaging using targeted Epac2camps sensors revealed no change in subsarcolemmal [cAMP], but a 2ā€fold higher Ī²ā€AR stimulation of cytoplasmic [cAMP] in RVMs versus LVMs. Accordingly, Ī²ā€AR regulation of ICa,L and IKs were similar between LVMs and RVMs, whereas cytoplasmic PKA activity was increased in RVMs. Both PDE3 and PDE4 contributed to the Ī²ā€AR regulation of cytoplasmic [cAMP], and the difference between LVMs and RVMs was abolished by PDE3 inhibition and attenuated by PDE4 inhibition. Finally LV and RV intracavitary pressures were recorded in anesthetized beagle dogs. A bolus injection of isoproterenol increased RV dP/dtmaxā‰ˆ5ā€fold versus 3ā€fold in LV. Conclusion Canine RV and LV differ in their Ī²ā€AR response due to intrinsic differences in myocyte Ī²ā€AR downstream signaling. Enhanced Ī²ā€AR responsiveness of the RV results from higher cAMP elevation in the cytoplasm, due to a decreased degradation by PDE3 and PDE4 in the RV compared to the LV

    Discovery and characterization of ORM-11372, a novel inhibitor of the sodium-calcium exchanger with positive inotropic activity

    Get PDF
    BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC(50) values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (I(Na) ) and hERG K(V) 11.1 currents (I(hERG) ) in a concentration-dependent manner; IC(50) values were 23.2 and 10.0 Ī¼M. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 Ī¼M. ORM-11372 induced positive inotropic effects of 18 Ā± 6% and 35 Ā± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.Peer reviewe

    Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma

    Get PDF
    Acknowledgments We thank Dr Stuart MacGregor for his input on the study proposal and review of prior versions of this manuscript. We also thank all patients and controls for participating in this study. The MD Anderson controls were drawn from dbGaP (study accession: phs000187.v1.p1). Genotyping of these controls were done through the University of Texas MD Anderson Cancer Center (UTMDACC) and the Johns Hopkins University Center for Inherited Disease Research (CIDR). We acknowledge the principal investigators of this study: Christopher Amos, Qingyi Wei, and Jeffrey E. Lee. Controls from the Genome-Wide Association Study of Parkinson Disease were obtained from dbGaP (study accession: phs000196.v2.p1). This work, in part, used data from the National Institute of Neurological Disorders and Stroke (NINDS) dbGaP database from the CIDR: NeuroGenetics Research Consortium Parkinsonā€™s disease study. We acknowledge the principal investigators and coinvestigators of this study: Haydeh Payami, John Nutt, Cyrus Zabetian, Stewart Factor, Eric Molho, and Donald Higgins. Controls from the Chronic Renal Insufficiency Cohort (CRIC) were drawn from dbGaP (study accession: phs000524.v1.p1). The CRIC study was done by the CRIC investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Data and samples from CRIC reported here were supplied by NIDDK Central Repositories. This report was not prepared in collaboration with investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the NIDDK Central Repositories, or the NIDDK. We acknowledge the principal investigators and the project officer of this study: Harold I Feldman, Raymond R Townsend, Lawrence J. Appel, Mahboob Rahman, Akinlolu Ojo, James P. Lash, Jiang He, Alan S Go, and John W. Kusek. The following UK hospitals participated in sample collection through the Stomach and Oesophageal Cancer Study (SOCS) collaboration network: Addenbrookeā€™s Hospital, University College London, Bedford Hinchingbrooke Hospital, Peterborough City Hospital, West Suffolk Norfolk and Norwich University Hospital, Churchill Hospital, John Hospital, Velindre Hospital, St Bartholomewā€™s Hospital, Queenā€™s Burton, Queen Elisabeth Hospital, Diana Princess of Wales, Scunthorpe General Hospital, Royal Devon & Exeter Hospital, New Cross Hospital, Belfast City Hospital, Good Hope Hospital, Heartlands Hospital, South Tyneside District General Hospital, Cumberland Infirmary, West Cumberland Hospital, Withybush General Hospital, Stoke Mandeville Hospital, Wycombe General Hospital, Wexham Park Hospital, Southend Hospital, Guyā€™s Hospital, Southampton General Hospital, Bronglais General Hospital, Aberdeen Royal Infirmary, Manor Hospital, Clatterbridge Centre for Oncology, Lincoln County Hospital, Pilgrim Hospital, Grantham & District Hospital, St Maryā€™s Hospital London, Croydon University Hospital, Whipps Cross University Hospital, Wansbeck General Hospital, Hillingdon Hospital, Milton Keynes General Hospital, Royal Gwent Hospital, Tameside General Hospital, Castle Hill Hospital, St Richardā€™s Hospital, Ipswich Hospital, St Helens Hospital, Whiston Hospital, Countess of Chester Hospital, St Maryā€™s Hospital IOW, Queen Alexandra Hospital, Glan Clwyd Hospital, Wrexham Maelor Hospital, Darent Valley Hospital, Royal Derby Hospital, Derbyshire Royal Infirmary, Scarborough General Hospital, Kettering General Hospital, Kidderminster General Hospital, Royal Lancaster Infirmary, Furness General Hospital, Westmorland General Hospital, James Cook University Hospital, Friarage Hospital, Stepping Hill Hospital, St Georgeā€™s Hospital London, Doncaster Royal Infirmary, Maidstone Hospital, Tunbridge Hospital, Prince Charles Hospital, Hartlepool Hospital, University Hospital of North Tees, Ysbyty Gwynedd, St. Jameā€™s University Hospital, Leeds General Infirmary, North Hampshire Hospital, Royal Preston Hospital, Chorley and District General, Airedale General Hospital, Huddersfield Royal Infirmary, Calderdale Royal Hospital, Torbay District General Hospital, Leighton Hospital, Royal Albert Edward Infirmary, Royal Surrey County Hospital, Bradford Royal Infirmary, Burnley General Hospital, Royal Blackburn Hospital, Royal Sussex County Hospital, Freeman Hospital, Royal Victoria Infirmary, Victoria Hospital Blackpool, Weston Park Hospital, Royal Hampshire County Hospital, Conquest Hospital, Royal Bournemouth General Hospital, Mount Vernon Hospital, Lister Hospital, William Harvey Hospital, Kent and Canterbury Hospital, Great Western Hospital, Dumfries and Galloway Royal Infirmary, Poole General Hospital, St Hellier Hospital, North Devon District Hospital, Salisbury District Hospital, Weston General Hospital, University Hospital Coventry, Warwick Hospital, George Eliot Hospital, Alexandra Hospital, Nottingham University Hospital, Royal Chesterfield Hospital, Yeovil District Hospital, Darlington Memorial Hospital, University Hospital of North Durham, Bishop Auckland General Hospital, Musgrove Park Hospital, Rochdale Infirmary, North Manchester General, Altnagelvin Area Hospital, Dorset County Hospital, James Paget Hospital, Derriford Hospital, Newham General Hospital, Ealing Hospital, Pinderfields General Hospital, Clayton Hospital, Dewsbury & District Hospital, Pontefract General Infirmary, Worthing Hospital, Macclesfield Hospital, University Hospital of North Staffordshire, Salford Royal Hospital, Royal Shrewsbury Hospital, and Manchester Royal Infirmary. Conflict of interest The authors disclose no conflicts. Funding This work was primarily funded by the National Institutes of Health (NIH) (R01CA136725). The funders of the study had no role in the design, analysis, or interpretation of the data, nor in writing or publication decisions related to this article. Jing Dong was supported by a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097) and the Research and Education Program Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (AHW). Quinn T. Ostrom was supported by RP160097. Puya Gharahkhani was supported by a grant from National Health and Medical Research Council of Australia (1123248). Geoffrey Liu was supported by the Alan B. Brown Chair in Molecular Genomics and by the CCO Chair in Experimental Therapeutics and Population Studies. The University of Cambridge received salary support for Paul D. Pharoah from the NHS in the East of England through the Clinical Academic Reserve. Brian J. Reid was supported by a grant (P01CA91955) from the NIH/National Cancer Institute (NCI). Nicholas J. Shaheen was supported by a grant (P30 DK034987) from NIH. Thomas L. Vaughan was supported by NIH Established Investigator Award K05CA124911. Michael B. Cook was supported by the Intramural Research Program of the NCI, NIH, Department of Health and Human Services. Douglas A. Corley was supported by the NIH grants R03 KD 58294, R21DK077742, and RO1 DK63616 and NCI grant R01CA136725. Carlo Maj was supported by the BONFOR-program of the Medical Faculty, University of Bonn (O-147.0002). Jesper Lagergren was supported by the United European Gastroenterology (UEG) Research Prize. David C. Whiteman was supported by fellowships from the National Health and Medical Research Council of Australia (1058522, 1155413).Peer reviewedPostprin

    Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.

    Get PDF
    BACKGROUND: Oesophageal adenocarcinoma represents one of the fastest rising cancers in high-income countries. Barrett's oesophagus is the premalignant precursor of oesophageal adenocarcinoma. However, only a few patients with Barrett's oesophagus develop adenocarcinoma, which complicates clinical management in the absence of valid predictors. Within an international consortium investigating the genetics of Barrett's oesophagus and oesophageal adenocarcinoma, we aimed to identify novel genetic risk variants for the development of Barrett's oesophagus and oesophageal adenocarcinoma. METHODS: We did a meta-analysis of all genome-wide association studies of Barrett's oesophagus and oesophageal adenocarcinoma available in PubMed up to Feb 29, 2016; all patients were of European ancestry and disease was confirmed histopathologically. All participants were from four separate studies within Europe, North America, and Australia and were genotyped on high-density single nucleotide polymorphism (SNP) arrays. Meta-analysis was done with a fixed-effects inverse variance-weighting approach and with a standard genome-wide significance threshold (p<5ā€ˆĆ—ā€ˆ10-8). We also did an association analysis after reweighting of loci with an approach that investigates annotation enrichment among genome-wide significant loci. Furthermore, the entire dataset was analysed with bioinformatics approaches-including functional annotation databases and gene-based and pathway-based methods-to identify pathophysiologically relevant cellular mechanisms. FINDINGS: Our sample comprised 6167 patients with Barrett's oesophagus and 4112 individuals with oesophageal adenocarcinoma, in addition to 17ā€ˆ159 representative controls from four genome-wide association studies in Europe, North America, and Australia. We identified eight new risk loci associated with either Barrett's oesophagus or oesophageal adenocarcinoma, within or near the genes CFTR (rs17451754; p=4Ā·8ā€ˆĆ—ā€ˆ10-10), MSRA (rs17749155; p=5Ā·2ā€ˆĆ—ā€ˆ10-10), LINC00208 and BLK (rs10108511; p=2Ā·1ā€ˆĆ—ā€ˆ10-9), KHDRBS2 (rs62423175; p=3Ā·0ā€ˆĆ—ā€ˆ10-9), TPPP and CEP72 (rs9918259; p=3Ā·2ā€ˆĆ—ā€ˆ10-9), TMOD1 (rs7852462; p=1Ā·5ā€ˆĆ—ā€ˆ10-8), SATB2 (rs139606545; p=2Ā·0ā€ˆĆ—ā€ˆ10-8), and HTR3C and ABCC5 (rs9823696; p=1Ā·6ā€ˆĆ—ā€ˆ10-8). The locus identified near HTR3C and ABCC5 (rs9823696) was associated specifically with oesophageal adenocarcinoma (p=1Ā·6ā€ˆĆ—ā€ˆ10-8) and was independent of Barrett's oesophagus development (p=0Ā·45). A ninth novel risk locus was identified within the gene LPA (rs12207195; posterior probability 0Ā·925) after reweighting with significantly enriched annotations. The strongest disease pathways identified (p<10-6) belonged to muscle cell differentiation and to mesenchyme development and differentiation. INTERPRETATION: Our meta-analysis of genome-wide association studies doubled the number of known risk loci for Barrett's oesophagus and oesophageal adenocarcinoma and revealed new insights into causes of these diseases. Furthermore, the specific association between oesophageal adenocarcinoma and the locus near HTR3C and ABCC5 might constitute a novel genetic marker for prediction of the transition from Barrett's oesophagus to oesophageal adenocarcinoma. Fine-mapping and functional studies of new risk loci could lead to identification of key molecules in the development of Barrett's oesophagus and oesophageal adenocarcinoma, which might encourage development of advanced prevention and intervention strategies. FUNDING: US National Cancer Institute, US National Institutes of Health, National Health and Medical Research Council of Australia, Swedish Cancer Society, Medical Research Council UK, Cambridge NIHR Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, Else Krƶner Fresenius Stiftung, Wellcome Trust, Cancer Research UK, AstraZeneca UK, University Hospitals of Leicester, University of Oxford, Australian Research Council

    No Association Between Vitamin D Status and Risk of Barrett's Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study.

    Get PDF
    BACKGROUND & AIMS: Epidemiology studies of circulating concentrations of 25 hydroxy vitamin D (25(OH)D) and risk of esophageal adenocarcinoma (EAC) have produced conflicting results. We conducted a Mendelian randomization study to determine the associations between circulating concentrations of 25(OH)D and risks of EAC and its precursor, Barrett's esophagus (BE). METHODS: We conducted a Mendelian randomization study using a 2-sample (summary data) approach. Six single-nucleotide polymorphisms (SNPs; rs3755967, rs10741657, rs12785878, rs10745742, rs8018720, and rs17216707) associated with circulating concentrations of 25(OH)D were used as instrumental variables. We collected data from 6167 patients with BE, 4112 patients with EAC, and 17,159 individuals without BE or EAC (controls) participating in the Barrett's and Esophageal Adenocarcinoma Consortium, as well as studies from Bonn, Germany, and Cambridge and Oxford, United Kingdom. Analyses were performed separately for BE and EAC. RESULTS: Overall, we found no evidence for an association between genetically estimated 25(OH)D concentration and risk of BE or EAC. The odds ratio per 20 nmol/L increase in genetically estimated 25(OH)D concentration for BE risk estimated by combining the individual SNP association using inverse variance weighting was 1.21 (95% CI, 0.77-1.92; PĀ = .41). The odds ratio for EAC risk, estimated by combining the individual SNP association using inverse variance weighting, was 0.68 (95% CI, 0.39-1.19; PĀ = .18). CONCLUSIONS: In a Mendelian randomization study, we found that low genetically estimated 25(OH)D concentrations were not associated with risk of BE or EAC

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    • ā€¦
    corecore