44 research outputs found

    Erosion characteristics and floc strenght of Athabasca river cohesive sediments: towards managing sediment-related issues

    Get PDF
    Purpose: Most of Canada’s tar sands exploitations are located in the Athabasca river basin. Deposited cohesive sediments in Athabasca river and tributaries are a potential source of PAHs in the basin. Erosional behavior of cohesive sediments depends not only of fluid turbulence but on sediments structure and particularly the influence of organic content. This research tries to describe this behavior in Athabasca river sediments. Methods: An experimental study of cohesive sediments dynamics in one of the tributaries, the Muskeg river, was developed in a rotating annular flume. Variation of the shear stress allowed the determination of erosional strength for beds with different consolidation periods. Particle size measurements were made with a laser diffraction device operated in a continuous flow through mode. Optical analyses of flocs (ESEM and TEM) were performed with samples taken at the end of the experiments. Results: An inverse relationship between suspended sediment concentration (SS) and the consolidation period was found. The differences are related in this research to the increasing organic content of the sediments with consolidation period. The particle size measurements during the experiments showed differences on floc strength that are also related to changing organic content during different consolidation periods. ESEM and TEM observations confirm the structural differences for beds with different consolidation periods. The effects of SFGL on floc structure and in biostabilization of the bed are discussed. Conclusions: It is recommended in this paper that consolidation period should be taken into account for the modeling of erosion of cohesive sediments in the Athabasca river. Relating to transport models of pollutants (PAHs) it is highly recommended to consider flocs organic content, particularly algae, in the resuspension module.Environment Canada, CONACY

    The pervasive role of biological cohesion in bedform development

    Get PDF
    Sediment fluxes in aquatic environments are crucially dependent on bedform dynamics. However, sediment-flux predictions rely almost completely on clean-sand studies, despite most environments being composed of mixtures of non-cohesive sands, physically cohesive muds and biologically cohesive extracellular polymeric substances (EPS) generated by microorganisms. EPS associated with surficial biofilms are known to stabilize sediment and increase erosion thresholds. Here we present experimental data showing that the pervasive distribution of low levels of EPS throughout the sediment, rather than the high surficial levels of EPS in biofilms, is the key control on bedform dynamics. The development time for bedforms increases by up to two orders of magnitude for extremely small quantities of pervasively distributed EPS. This effect is far stronger than for physical cohesion, because EPS inhibit sand grains from moving independently. The results highlight that present bedform predictors are overly simplistic, and the associated sediment transport processes require re-assessment for the influence of EPS

    Impairment of the bacterial biofilm stability by triclosan

    Get PDF
    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects.Publisher PDFPeer reviewe

    Intracellular versus extracellular iron accumulation in freshwater periphytic mats across a mine water treatment lagoon

    No full text
    Despite the importance of periphyton–metal interactions in bioremediation schemes and in phosphorus (P) cycling, the processes controlling metal accumulation in periphytic mats are still poorly understood. Iron (Fe) accumulation in periphytic mats was examined across a Fe settlement lagoon receiving mine drainage in Scotland, UK, between March and June 2008. Quantification and mapping of intracellular and extracellular Fe concentrations in periphyton samples using scanning electron microscopy–energy dispersive spectroscopy suggested that Fe accumulation was dominated by the association of Fe-rich precipitates with the extracellular polymeric substances matrix, rather than biotic uptake. Intracellular Fe concentrations were significantly higher in periphyton samples exposed to the highest dissolved Fe concentrations. Neither intracellular nor extracellular Fe concentrations were significantly affected by light availability or cell density. While diatoms dominated the periphyton communities there was no significant association of diatom functional groups with Fe accumulation, indicating that community composition may not affect the function of periphytic mats with respect to Fe removal. Scale-up calculations based on the mean measured Fe accumulation rate by periphyton substrates of 0.021 g m−2 day−1 showed that exposure of large surface areas of periphyton substrate in the settlement lagoon would only increase the Fe removal efficiency of the lagoon by c.1%
    corecore