42 research outputs found

    Biotic and abiotic factors that determine the emission of volatile organic compounds by flowers

    Get PDF
    Les flors emeten compostos orgànics volàtils (VOCs) per tal d’atreure pol·linitzadors i estimular la fecundació creuada. Alguns volàtils florals però juguen altres funcions, com ara la defensa contra els herbívors. Aquesta dualitat de rols que tenen les olors florals les converteix en complexes mescles de compostos amb múltiples efectes sobre diferents organismes. La complexitat de comprendre i caracteritzar les emissions florals augmenta quan considerem que són variables en el temps i l’espai. A aquestes fonts de variabilitat cal afegir diversos factors ambientals biòtics i abiòtics que modifiquen les emissions de COVs florals de diverses maneres. L’objectiu principal d’aquesta tesi és esclarir quins són els factors que determinen les emissions florals de volàtils, i veure de quina manera les afecten a elles i a les seves funcions ecològiques. En el primer capítol de la tesi hem revisat el coneixement actual sobre les emissions florals de VOCs i hem identificat les qüestions que necessitaven ser investigades en aquest camp de recerca. Les emissions florals estan determinades en primer lloc per la diversitat de compostos que les espècies són capaces de produir, els seu potencial biosintètic i la seva capacitat d’emissió, que estan fortament lligades a la biologia de l’espècie. Hem testat i demostrat que les plantes pol·linitzades per insectes solen presentar major diversitat de volàtils florals i emeten una major quantitat d’aquests que les plantes pol·linitzades pel vent, que no necessiten volàtils florals per funcions d’atracció. Hem testat si els patrons estacionals de disminució de la competència que ocorren cada any entre plantes d’una mateixa comunitat vegetal han donat lloc a la selecció d’un patró de disminució de les emissions i les recompenses florals al llarg del període de floració de cada espècie. També hem observat que les plantes adapten la seva fisiologia per optimitzar les seves emissions florals sota les condicions climàtiques de la seva època de floració. Les emissions florals de COVs es veuen afectades per factors ambientals al nivell d’organisme o de teixit. Hi ha diversos estats fisiològics de la planta que poden modificar substancialment la composició i la quantitat de les emissions florals de COVs. Els nostres experiments han demostrat que la microbiota floral pot jugar un rol crucial sobre la quantitat i composició de les emissions florals de COVs. També hem mostrat que l’herbivoria de flors per part d’erugues de Pieris brassicae sobre plantes de Diplotaxis erucoides indueixen augments immediats de les emissions de compostos amb funcions defensives. A més, l’herbivoria de flors i fulles combinada va mostrar un efecte sinèrgic que augmenta la resposta defensiva. La recerca sobre els canvis que poden experimentar les emissions florals en resposta a diversos agents del Canvi Global són de gran interès degut als diversos efectes que aquests canvis poden tenir sobre les interaccions que s’estableixen mitjançant els COVs florals. Els nostres resultats revelen que els augments de temperatura previstos per al segle següent deguts a l’Escalfament Global poden conduir a augments significatius de les emissions totals de COVs i també a canvis importants en la composició relativa de les olors florals. També hem observat que l’ozó causa una degradació significativa dels compostos florals i provoca canvis en la composició relativa de les olors. Els testos de resposta indiquen que els canvis observats en les olors florals exposades a ozó resulten en la pèrdua de l’atracció de pol·linitzadors. Aquesta tesi proporciona una nova visió sobre els factors que determinen les emissions florals de volàtils i les seves repercussions sobre les interaccions planta-pol·linitzador, i garanteix una major consideració dels factors biòtics i abiòtics que afecten la química i l’ecologia de les olors florals en un ambient contínuament canviant.Flowers emit volatile organic compounds (VOCs) to attract pollinators and stimulate reproductive outcrossing. Some floral volatiles can play roles other than attraction, such as defense against herbivores. This duality of roles of flower emissions converts floral scents into complex mixtures of compounds with multiple effects on different organisms. The complexity of understanding and characterising floral emissions increases when considering that they are variable in time and space. To all these sources of variability we can add diverse biotic and abiotic environmental factors that modify floral VOC emissions in many different ways. The main objective of this thesis was to shed light on which are the factors that determine floral volatile emissions, and how do they affect these emissions and their ecological functions. In the first chapter of this thesis we reviewed the current knowledge on floral VOC emissions. We identified the open questions that still needed to be addressed or investigated in more detail in the research field of floral VOC emissions. Floral emissions are first determined by the array of compounds that the species are able to produce and their potential biosynthetic and emission capacities, which are strongly related to the species biology. We tested and demonstrated that flowering plants pollinated by insects usually present higher diversities of floral volatiles and emit higher amounts of them, than do plants pollinated by wind which do not need floral volatiles for attractive purposes. We tested whether well-known seasonal patterns of decreasing competition occurring every year in a community among co-flowering plants for pollinators led to the selection of a pattern of decreasing emission of floral volatiles and decreasing production of floral rewards along the flowering period of each species. We also observed that plants adapt their physiology to optimize their floral emissions under the climatic conditions of the flowering period. Floral VOC emissions of the species are affected by environmental factors at the individual (organism) or tissular level. There are diverse physiological states of the plant that can substantially modify the emission profiles and amounts of floral VOCs. Our experiments demonstrated that floral microbiota can play a crucial role in the quantity and quality of floral VOC emissions. We also showed that flower herbivory by Pieris brassicae caterpillars on Diplotaxis erucoides plants induced immediate increases in floral emission rates of few compounds with known defensive functions. Leaf herbivory caused no changes in the emissions of intact flowers, but the combination of leaf herbivory with flower herbivory showed a synergistic effect with enhanced defensive response. The research on the potential changes that floral emissions could experience in response to diverse drivers of Global Change are of critical interest because of the diverse effects that such changes can have on the interactions that floral VOCs mediate. Our results revealed that temperature increases as those predicted for the next century as a result of Global Warming can lead to significant total increases in floral VOC emissions and also to important changes in floral scent relative composition. We also detected that ozone caused significant degradation of floral compounds and changes in their relative composition. Behavioural tests indicated that all the changes observed in floral chemical cues when exposed to ozone resulted in the loss of attraction effect on pollinators. This thesis thus provides new insights on the factors that determine floral volatile emissions and their repercussions on plant-pollinator interactions and warrant deep consideration of both biotic and abiotic factors driving floral scent chemistry and floral scent ecology in a continuously changing environment

    Focus EMU, January 13, 1987

    Get PDF
    The drivers of global change, such as increasing drought and nutrient deposition, are affecting soils and their microbial communities in many different habitats, but how these factors interact remains unclear. Quercus ilex and Pinus sylvestris are two important tree species in Mediterranean montane areas that respond differently to drought, which may be associated with the soils in which they grow. We measured soil respiration and physiologically profiled microbial communities to test the impact of drought and subsequent recovery on soil function and diversity for these two species. We also tested whether the addition of nitrogen and phosphorus modified these effects. Drought was the stronger driver of changes to the soil communities, decreasing diversity (Shannon index), and evenness for both species and decreasing soil respiration for Q. ilex when N was added. Soil respiration for P. sylvestris during the drought period was positively affected by N addition but was not affected by water stress. P addition during the drought period did not affect soil respiration for either tree species but did interact with soil-water content to affect community evenness for P. sylvestris. The two species also differed following the recovery from drought. Soil respiration for Q. ilex recovered fully after the drought treatment ended but decreased for P. sylvestris, whereas the soil community was more resilient for P. sylvestris than Q. ilex. Nutrient addition did not affect respiration or community composition or diversity during the recovery period. Soil respiration was generally weakly positively correlated with soil diversity. We demonstrate that short-term water stress and nutrient addition can have variable effects on the soil communities associated with different tree species and that the compositions of the communities can become uncoupled from soil respiration. Overall, we show that drought may be a stronger driver of changes to soil communities than nitrogen or phosphorus deposition

    Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions

    Get PDF
    Due to their antimicrobial effects and their potential role as carbon sources, plant volatile organic compound (VOC) emissions play significant roles in determining the characteristics of the microbial communities that can establish on plant surfaces. Furthermore, epiphytic microorganisms, including bacteria and fungi, can affect plant VOC emissions in different ways: by producing and emitting their own VOCs, which are added to and mixed with the plant VOC blend; by affecting plant physiology and modifying the production and emission of VOCs; and by metabolizing the VOCs emitted by the plant. The study of the interactions between plant VOC emissions and phyllospheric microbiotas is thus of great interest and deserves more attention

    β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms

    Get PDF
    β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here

    Assessment of the response of photosynthetic activity of Mediterranean evergreen oaks to enhanced drought stress and recovery by using PRI and R690/R630

    Get PDF
    Agraïments: Chao Zhang gratefully acknowledges the support from the Chinese Scholarship Council.The photochemical reflectance index (PRI) and red-edge region of the spectrum are known to be sensitive to plant physiological processes, and through measurement of these optical signals it is possible to use non-invasive remote sensing to monitor the plant photosynthetic status in response to environmental stresses such as drought. We conducted a greenhouse experiment using Quercus ilex, a Mediterranean evergreen oak species, to investigate the links between leaf-level PRI and the red-edge based reflectance ratio (R690/R630) with CO2 assimilation rates (A), and photochemical efficiency (FV/FM and Yield) in response to a gradient of mild to extreme drought treatments (nine progressively enhanced drought levels) and corresponding recovery. PRI and R690/R630 both decreased under enhanced drought stress, and had significant correlations with A, FV/FM and Yield. The differential values between recovery and drought treatments of PRI (DPRIrecovery) and R690/R630 (DR690/R630recovery) increased with the enhanced drought levels, and significantly correlated with the increases of DArecovery, DFV/FMrecovery and DYieldrecovery. We concluded that both PRI and R690/R630 were not only sensitive to enhanced drought stresses, but also highly sensitive to photosynthetic recovery. Our study makes important progress for remotely monitoring the effect of drought and recovery on photosynthetic regulation using the simple physiological indices of PRI and R690/R630

    Pollination mode determines floral scent

    Get PDF
    The main objective of this study is to determine if the pollination vector influences the potential floral emissions of flowering plants. We hypothesized that flowers pollinated by insects would emit significantly higher amounts of volatile organic compounds (VOCs) and would present a higher diversity of these compounds than flowers pollinated by wind. The floral emissions of fifteen entomophilous species and eleven anemophilous species were captured by dynamic headspace sampling under field conditions and analyzed by gas chromatography-mass spectrometry. We searched for differences in the emission profiles between anemophilous and entomophilous flowers by considering the effects of phylogeny in our analysis. The floral emissions from the two groups were significantly different. Entomophilous species presented highly diverse emissions in both magnitude of emission rates and richness of compounds depending on the species, but overall, the flowers from entomophilous species had much higher VOC emission rates and VOC richness, both for terpenes and benzenoid compounds, than those from anemophilous species (two orders of magnitude higher emissions). The data thus confirm that the presence of intensely scented flowers with complex scents is strongly related to biotic pollination

    Ozone degrades floral scent and reduces pollinator attraction to flowers

    Get PDF
    In this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction. - For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris. - The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O3 over a 4.5 m distance. - The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators

    Thirsty tree roots exude more carbon

    Get PDF
    Root exudation is an important input of carbon into soils and affects plant and soil communities, but little is known about the effect of climatic factors such as drought on exudation, and its ability to recover. We studied the impact of increasing drought on root exudation and its subsequent recovery in the Mediterranean tree species Quercus ilex L. in a greenhouse study by measuring the amount of total organic carbon in exudates. The amount of exudation per unit root area increased with drought duration and was 21% higher under the most extreme drought scenario compared with the non-droughted control. The amount of root exudation did not differ between the treatments following 6 weeks of re-watering, indicating a strong capacity for recovery in this species. We concluded that drought could affect the amount of root exudation, which could in turn have a large impact on microbial activity in the rhizosphere, and alter these microbial communities, at least in the short term. This tree species may be able to return to normal levels of root exudation after a drought event, but long-term exudate-mediated impacts on Mediterranean forest soils may be an unforeseen effect of drought

    Optimum temperature for floral terpene emissions tracks the mean temperature of the flowering season

    Get PDF
    Emissions of volatiles from leaves exhibit temperature dependence on maximums, but the optimum temperatures for the release of floral volatiles and the mechanism(s) of optimising these emissions have not been determined. We hypothesised that flowers have an optimum temperature for the emission of volatiles and, because the period of flowering varies highly among species, that this optimum is adapted to the temperatures prevailing during flowering. To test these hypotheses, we characterised the temperature responses of floral terpene emissions of diverse widespread Mediterranean plant species flowering in different seasons by using dynamic headspace sampling and analysis with GC-MS. The floral emissions of terpenes across species exhibited maximums at the temperatures corresponding to the season of flowering, with the lowest optimal temperatures observed in winter-flowering and the highest in summer-flowering species. These trends were valid for emissions of both total terpenes and the various terpene compounds. The results show that the optimum temperature of floral volatile emissions scales with temperature at flowering, and suggest that this scaling is the outcome of physiological adaptations of the biosynthetic or emission mechanisms of flowers

    Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.)

    Get PDF
    The main function of floral emissions of volatile organic compounds (VOCs) in entomophilous plants is to attract pollinators. Floral blends, however, can also contain volatile compounds with defensive functions. These defensive volatiles are specifically emitted when plants are attacked by pathogens or herbivores. We characterized the changes in the floral emissions of Diplotaxis erucoides induced by folivory and florivory by Pieris brassicae. Plants were continually subjected to folivory, florivory and folivory + florivory treatments for two days. We measured floral emissions with proton transfer reaction/mass spectroscopy (PTR-MS) at different times during the application of the treatments. The emissions of methanol, ethyl acetate and another compound, likely 3-butenenitrile, increased significantly in response to florivory. Methanol and 3-butenenitrile increased 2.4- and 26-fold, respectively, in response to the florivory treatment. Methanol, 3-butenenitrile and ethyl acetate increased 3-, 100- and 9-fold, respectively, in response to the folivory + florivory treatment. Folivory alone had no detectable effect on floral emissions. All VOC emissions began immediately after attack, with no evidence of delayed induction in any of the treatments. Folivory and florivory had a synergistic effect when applied together, which strengthened the defensive response when the attack was extended to the entire plant
    corecore