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Abstract 1 

The main function of floral emissions of volatile organic compounds (VOCs) in 2 

entomophilous plants is to attract pollinators. Floral blends, however, can also contain 3 

volatile compounds with defensive functions. These defensive volatiles are specifically 4 

emitted when plants are attacked by pathogens or herbivores. We characterized the 5 

changes in the floral emissions of Diplotaxis erucoides induced by folivory and 6 

florivory by Pieris brassicae. Plants were continually subjected to folivory, florivory 7 

and folivory+florivory treatments for two days. We measured floral emissions with 8 

proton transfer reaction/mass spectroscopy (PTR-MS) at different times during the 9 

application of the treatments. The emissions of methanol, ethyl acetate and another 10 

compound, likely 3-butenenitrile, increased significantly in response to florivory. 11 

Methanol and 3-butenenitrile increased 2.4- and 26-fold, respectively, in response to the 12 

florivory treatment. Methanol, 3-butenenitrile and ethyl acetate increased 3-, 100- and 9-13 

fold, respectively, in response to the folivory+florivory treatment. Folivory alone had no 14 

detectable effect on floral emissions. All VOC emissions began immediately after attack, 15 

with no evidence of delayed induction in any of the treatments. Folivory and florivory 16 

had a synergistic effect when applied together, which strengthened the defensive 17 

response when the attack was extended to the entire plant. 18 

Keywords: Methanol, glucosinolates, ethyl acetate, floral scent, VOCs, folivory-19 

florivory synergy. 20 

 21 

 22 

 23 

 24 
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1 Introduction 25 

Flowers are visited by many organisms that can have positive, neutral or negative 26 

effects on plants (Irwin et al., 2004). Such visits can have important repercussions on 27 

plant fitness (Soper Gorden, 2013). The main visitors to flowers can be classified as 28 

pollinators, larcenists (nectar thieves) and florivores. Pollinators have positive effects on 29 

flowers by acting as effective vectors of pollination (Dafni, 1992; Dafni et al., 2005), 30 

but larcenists and florivores have detrimental effects on flowers (Field, 2001; Irwin et 31 

al., 2001; Mothershead and Marquis, 2000). Larcenists affect plant fitness negatively by 32 

exploiting and exhausting floral rewards, which are produced to attract pollinators, 33 

without contributing to successful pollination (Irwin et al., 2010). Florivory can reduce 34 

the attractiveness of flowers by altering the quality and quantity of diverse floral traits, 35 

such as petal size or nectar production (Cardel and Koptur, 2010; McCall and Irwin, 36 

2006; McCall, 2008). Florivory can also critically damage floral structures that are 37 

important for fruit and seed development (Cardel and Koptur, 2010; McCall, 2008). 38 

Visitors to flowers thus have multiple and diverse effects on plants (Farré-Armengol et 39 

al., 2013; Kessler and Halitschke, 2009).  40 

Plants have several strategies to attract pollinators to their flowers for pollination 41 

and reproductive outcrossing (Chittka & Raine, 2006; Sheehan et al., 2012; Schiestl & 42 

Johnson, 2013). Plants have also evolved different mechanisms (toxins, deterrents and 43 

physical barriers) and strategies (escape in time or space) to prevent visits from visitors 44 

such as larcenists and herbivores that can have significant negative effects on fitness 45 

(Irwin et al., 2004). Among these mechanisms, the emission of volatile organic 46 

compounds (VOCs) such as terpenoids, benzenoids and fatty acid derivatives serves 47 

plants to attract or deter various visitors to flowers (Kessler et al., 2008, 2013; Junker & 48 

Blüthgen, 2010; Farré-Armengol et al., 2013). Benzenoids mostly function as 49 
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attractants in floral scents, while floral terpenoids can both attract and deter visitors 50 

(Farré-Armengol et al., 2013). 51 

Some VOCs are instantaneously released in high amounts from damaged plant 52 

tissues(Matsui, 2006). Herbivore-induced plant volatiles (HIPVs) play a crucial role in 53 

tritrophic interactions by being involved in a mechanism of indirect defense that attracts 54 

predators and parasitoids of the herbivores (Dicke, 2009; Hopkins et al., 2009; Llusià 55 

and Peñuelas, 2001; Whitman and Eller, 1990). HIPVs also mediate plant-to-plant 56 

communication by inducing defensive responses against herbivores in neighboring 57 

undamaged plants or in undamaged tissues of the same plant (Blande et al., 2010; Heil, 58 

2014; Rodriguez-Saona and Frost, 2010; Seco et al., 2011). 59 

 The emission of HIPVs by flowers may indiscriminately deter both pollinators 60 

and florivores and thus interfere with pollination (Dicke and Baldwin, 2010). In 61 

addition to the direct damage caused to plant tissues and other derived negative impacts, 62 

herbivory could thus have major detrimental effects on plant fitness when HIPVs are 63 

emitted by attacked flowers but also when the systemic transduction of defensive 64 

chemical responses is induced from damaged leaves or flowers to undamaged flowers 65 

(Lucas-Barbosa et al., 2011). Few studies, however, have demonstrated the induction of 66 

defensive VOCs in flowers in response to florivory (Muhlemann et al., 2014) or to the 67 

interaction between folivory and florivory. 68 

 We characterized the floral VOC emissions of Diplotaxis erucoides subjected to 69 

folivory and florivory by Pieris brassicae larvae. We hypothesized that folivory and 70 

florivory could induce the emission of floral HIPVs and that florivory would 71 

immediately induce the emission of VOCs. We thus compared the floral VOC 72 

emissions from plants subjected to florivory and folivory. Most herbivores feed on both 73 
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flowers and leaves, so plants infested by herbivores are expected to experience folivory 74 

and florivory at the same time (when in flower). We thus also subjected plants to a 75 

combined treatment of both folivory and florivory to test for additive or synergistic 76 

effects. 77 

 78 

2 Materials and methods 79 

2.1 Experimental design of bioassays 80 

Twenty D. erucoides plants of 40-60 cm height were collected near Cerdanyola del 81 

Vallès (Barcelona, Catalonia, NE Spain) and were transplanted in 3 dm
3
 pots with the 82 

soil from the field, whose properties were consistent among all the plants. We tested 83 

four different treatments: control, folivory, florivory and folivory+florivory. The floral 84 

emissions of four plants, one plant per treatment, were periodically monitored during 85 

two days. The process was repeated 5 times (with 5 different plants for each treatment) 86 

during two weeks. VOCs were measured once in the morning (8:00-12:00) from each 87 

plant in each treatment before larvae were applied and four times once the larvae started 88 

to feed on the flowers and leaves. The first post-treatment measurement was conducted 89 

immediately after applying P. brassicae larvae (all treatments except the control) and 90 

verifying that they began to eat leaves and/or flowers. The second post-treatment 91 

measurement was on the same day in the afternoon (14:00-17:00), and the third and 92 

fourth post-treatment measurements were on the following morning (8:00-11:00) and 93 

afternoon (12:00-15:00), respectively. The larvae were allowed to feed on the plants 94 

continuously during the two days of measurement. 95 

The P. brassicae larvae had been captured from the field at the 1
st
 and 2

nd
 instar 96 

stages. They were fed on D. erucoides plants until the 3
rd

 instar stage when they begin 97 
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to feed more and cause significant amounts of damage to their host plants and begin to 98 

show a preference for plant tissues other than leaves, such as flowers, which present 99 

more attractive nutritional properties (Smallegange et al., 2007). We applied larvae from 100 

the 3
rd

 to the 5
th

 (last) instar to the D. erucoides plants to feed on the flowers and/or 101 

leaves, depending on the treatment. The larvae were deprived of food for two hours 102 

before application to ensure that they would begin to feed immediately. Five larvae 103 

were applied to basal leaves in the folivory treatment, and two larvae were applied to an 104 

inflorescence in the florivory treatment. Seven larvae, two on an inflorescence and five 105 

on the basal leaves, were applied in the florivory+folivory treatment. We controlled the 106 

location of the larvae by enclosing the inflorescences in gauze bags or by preventing 107 

access to flowers.  108 

  We used a portable infrared gas analyzer (IRGA) system (LC-Pro+, ADC 109 

BioScientific Ltd., Herts, England) with a conifer leaf chamber (175 cm
3
) to sample 110 

floral VOC emissions at standard conditions of temperature (30 ºC) and light 111 

(PAR=1000 μmol m
-2

 s
-1

). An inflorescence containing 4-11 open flowers was enclosed 112 

in the chamber without detaching the flowers from the plant. For samples in the 113 

florivory and folivory+florivory treatments, we put the inflorescences with the larvae in 114 

the chamber and recorded the times at which the larvae began to feed for detecting and 115 

measuring floral VOCs instantaneously released by wounded floral tissues. We also 116 

measured several blank samples containing only larvae to identify possible larval 117 

emissions and to distinguish them from the floral emissions. 118 

 119 

2.2 Biogenic VOC (BVOC) exchange measurements 120 
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Flower samples were clamped into the leaf chamber (175 cm
3
) of an LC-Pro+ 121 

Photosynthesis System (ADC BioScientific Ltd., Herts, England). Flow meters 122 

monitored the air flowing through the LC-Pro+ chamber to determine and quantify 123 

BVOC exchange, and the air exiting the chamber was analyzed by proton transfer 124 

reaction-mass spectrometry (PTR-MS; Ionicon Analytik, Innsbruck, Austria). The leaf 125 

chamber was connected to the PTR-MS system using a Teflon
®
 tube (50 cm long and 2 126 

mm internal diameter). The system was identical for all measurements in all treatments 127 

and blanks. Floral emission rates were calculated for those masses that showed positive 128 

emissions after substracting the concentrations measured for the blanks from the 129 

concentrations of the samples. The floral emission rates were calculated from the 130 

difference between the concentrations of VOCs passing through the chamber clamped 131 

to the flowers and the chamber without flowers, considering the flow rates and the dry 132 

masses of open flowers. Finally, we selected only those VOC masses that showed 133 

statistically significant responses to any of the treatments tested, thus discussing and 134 

showing the floral emissions of these compounds but not describing the whole floral 135 

scent profile of D. erucoides that includes those VOCs that are constitutively emitted 136 

and did not change their emission rates in response to folivory and/or florivory.  137 

PTR-MS is based on chemical ionization, specifically non-dissociative proton 138 

transfer from H3O
+
 ions to most of the common BVOCs and has been fully described 139 

elsewhere (Peñuelas et al., 2005). The PTR-MS drift tube was operated at 2.1 mbar and 140 

50 ºC, with an E/N (electric field/molecule number density) of approximately 130 Td 141 

(townsend) (1 Td = 10
-17

 V cm
2
). The primary ion signal (H3O

+
) was maintained at 142 

approximately 6 × 10
6
 counts per second. The instrument was calibrated with a mixed 143 
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aromatic standard gas (TO-14A, Restek, Bellefonte, USA) and a monoterpene standard 144 

gas (Abello Linde SA, Barcelona, Spain). 145 

 146 

2.3 Statistical analyses 147 

We conducted analyses of variance (ANOVAs) with R software (R Development Core 148 

Team, 2011) to test the differences between pre- and post-treatment measurements for 149 

each compound and treatment. Relative increases in mean floral emission rates between 150 

post- and pre-treatment measurements were calculated for each individual. We 151 

conducted t-tests with STATISTICA 8 to analyze if relative increases in floral emission 152 

rates were significantly higher than 1. 153 

 154 

3 Results 155 

The feeding by P. brassicae larvae on floral tissues produced immediate and radical 156 

changes in floral emission rates (Figure 1). The rates of emission of masses 33 157 

(methanol), 68 (likely 3-butenenitrile) and 89 (ethyl acetate) increased immediately in 158 

the florivory and folivory+florivory treatments (Figure 1). The peaks of 3-butenenitrile 159 

and ethyl acetate fluctuated highly on a short timescale. The emissions of methanol 160 

were more constant and continuous after the initial increase compared to 3-butenenitrile 161 

and ethyl acetate.  162 

The floral emissions of the measured masses did not change significantly in the 163 

folivory treatment relative to the control treatment throughout the monitored period 164 

(Figure 2). The emission rates of methanol, 3-butenenitrile and ethyl acetate from the 165 

flowers increased 2.4- (P=0.055), 26- (P=0.099) and 2.8-fold (P=0.38), respectively, in 166 
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the florivory treatment and 2.9- (P=0.009), 100- (P=0.047) and 9-fold (P=0.025), 167 

respectively, in the folivory+florivory treatment relative to the control treatment (Figure 168 

3). 169 

  170 

4 Discussion 171 

4.1 Floral volatiles enhanced by folivory and florivory 172 

The emission rates of masses 33, 68 and 89 did not increase significantly in the folivory 173 

treatment, increased only marginally significantly in the florivory treatment but 174 

increased significantly in the folivory+florivory treatment (Figure 2). Only methanol 175 

has been detected with PTR-MS at mass 33 (Warneke et al., 2011, 2003). The 176 

protonated mass 68 detected by PTR-MS is very likely a glucosinolate derivative, such 177 

as 3-butenenitrile (molar mass 67). Glucosinolates are a group of chemicals typical in 178 

plants of the family Brassicaceae and are usually released after tissue damage, 179 

especially due to herbivorous attack (Tsao et al., 2002). Mass 89 is the primary PTR-180 

MS mass for ethyl acetate (Steeghs et al., 2004). The emission rates of mass 89 have 181 

also been correlated with those of masses 61 and 71, which are secondary masses of 182 

ethyl acetate (Steeghs et al., 2004). 183 

Florivory caused an immediate increase in the emission rates of methanol, 3-184 

butenenitrile and ethyl acetate in both the florivory and folivory+florivory treatments 185 

(Figure 1). All these compounds are released in high amounts immediately after damage 186 

to plant tissues. Methanol is a ubiquitous and well-known VOC that is normally emitted 187 

at high rates by undamaged plants but is also locally released in high amounts by 188 

wounded tissues (Peñuelas et al., 2005). Methanol is produced from pectin 189 

demethylation in the cell walls (Galbally and Kirstine, 2002; Seco et al., 2007), so 190 
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significant methanol emissions are expected from damaged plant tissues because pectin 191 

demethylation occurs in the apoplast, and methanol is a common constituent of the 192 

transpiratory stream in plants (Fall and Benson, 1996). Additionally, alkaline oral 193 

secretions from lepidopteran larvae induce a change in pH at the wound site that can 194 

strongly enhance methanol emissions (von Dahl et al., 2006). The compound emitted 195 

most by flowers subjected to florivory, 3-butenenitrile, is a glucosinolate derivative and 196 

thus has insecticidal activity in plants attacked by herbivores (Tsao et al., 2002). Some 197 

degradation products of glucosinolates, such as isothiocyanates, nitriles and 198 

thiocyanates, also participate in the induction of stomatal closure after herbivorous 199 

attack, suggesting that these degradation products regulate stomatal movements against 200 

attacks by phytophagous insects (Hossain et al., 2013). Ethyl acetate is emitted by some 201 

plant species in response to herbivorous and pathogenic attack from various plant 202 

structures, such as leaves (Zhang et al., 2008), roots (Steeghs et al., 2004) and fruits 203 

(Benelli et al., 2013).  204 

 205 

4.2 Dynamic response of floral emissions to florivory 206 

Floral emissions increased quickly in response to the attack on flowers by P. brassicae 207 

larvae (Figure 1) but did not change significantly in the final 28 h of the treatments. 208 

This immediate response indicated that the VOCs in the flowers were released from the 209 

wounded tissues once the larvae had begun to feed. The floral emission rates of 3-210 

butenenitrile and ethyl acetate fluctuated highly on a short timescale (Figure 1), which 211 

may indicate a very fast response of these compounds to the dynamic fluctuations in the 212 

intensity of the damage caused by the feeding P. brassicae larvae. The emission rates of 213 

methanol, however, were more constant after the initial increase in response to attack. 214 
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An increase in methanol emissions by wounded plant tissues can be mostly due to the 215 

direct release from internal tissues after damage (Peñuelas et al., 2005). 216 

 217 

4.3 Herbivore-induced plant volatiles and systemic defensive responses 218 

Defensive compounds can deter both detrimental and beneficial visitors to flowers in a 219 

similar way. The constitutive emission of repellent compounds to deter herbivores can 220 

thus imply disadvantages to plant fitness by the interference of pollination, which can 221 

sometimes exceed the benefits of avoiding enemies (Lucas-Barbosa et al., 2011). 222 

Selective pressures may then reduce or eliminate such deterrent compounds from floral 223 

emissions, due to the negative impact they have on plant fitness. From this viewpoint, 224 

plants may benefit from presenting defenses that are activated only when necessary, 225 

such as the HIPVs emitted after herbivorous attack. Induced defensive responses 226 

provide benefits to plants compared to constitutive defenses, such as their activation 227 

only when needed, representing a more optimal investment of resources for defense 228 

(Pare and Tumlinson, 1999).  229 

The induced emission of HIPVs during the flowering season, however, can 230 

imply detrimental effects on plant pollination (Lucas-Barbosa et al., 2011). The 231 

emission of HIPVs can be systemically induced from damaged to undamaged leaves 232 

(Dong et al., 2011; Rodriguez-Saona et al., 2009) and to undamaged flowers (Kessler 233 

and Halitschke, 2009; Theis et al., 2009). This systemic induction of deterrent emissions 234 

from damaged to undamaged plant tissues can also interfere with the attraction of 235 

pollinators, but some species can avoid the induction of HIPVs when they can interfere 236 

with pollinator attraction. HIPV emissions from Datura wrightii, for example, are high 237 

during the vegetative phase but decline after the beginning of flowering and fruit 238 
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production (Hare, 2010). This timing may avoid the counterproductive effect of HIPVs 239 

on pollinator visits. 240 

We found no evidence for a systemic induction of defensive floral VOC 241 

emissions in response to folivory in D. erucoides. Folivory combined with florivory, 242 

however, increased floral VOC emissions, perhaps by inducing a synergistic systemic 243 

effect. D. erucoides plants grow quickly and flower early and for a substantial portion 244 

of their lives. The long flowering period may have generated selection pressures to 245 

suppress herbivory-induced systemic responses in this species to avoid interference with 246 

pollinator attraction. Florivory caused only a local immediate increase in the emission 247 

rates of some volatiles in flowers damaged by P. brassicae larvae. This local defensive 248 

response may only deter herbivores temporarily at the site of damage so may not 249 

interfere with the pollination of distant undamaged flowers that are still attractive and 250 

viable. Similarly, Nicotiana suaveolens plants subjected to green-leaf herbivory emitted 251 

HIPVs from leaves but not from flowers, suggesting that the response to herbivory was 252 

systemic among leaves but was not transmitted to flowers (Effmert et al., 2008). In fact, 253 

flowers can show no induction of enhanced floral emissions in response to folivory and 254 

can even reduce their emissions due to tradeoffs between pollinator attraction and 255 

indirect defenses induced in other plant tissues (Schiestl et al., 2014). 256 

 257 

4.4 Synergistic effect of the folivory+florivory treatment 258 

Folivory alone had no clear significant effects on the emissions rates of floral volatiles. 259 

A synergistic effect on the emission rates of floral VOCs, however, was evident when 260 

folivory was combined with florivory. The relative increases in the emission rates of 261 

methanol, 3-butenenitrile and ethyl acetate between pre and post-treatment were 1.2-, 4- 262 
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and 3-fold higher, respectively, in the plants subjected to the combined treatment than in 263 

the plants subjected only to florivory (Figure 3).  264 

All these results strongly suggest a synergistic effect of folivory and florivory. 265 

Such an effect may intensify the magnitude of the chemical defensive response when 266 

both flowers and leaves are attacked, which usually indicates a wider degree of 267 

infestation. Plants may benefit from increasing their defenses when herbivorous attack 268 

is more severe and generalized compared to mild and local attacks. These results are the 269 

first reported indication of a synergistic effect of folivory and florivory on floral 270 

emissions. 271 

 272 
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Figure captions 431 

Figure 1. Dynamics of floral emission rates of masses 33 (methanol), 68 (likely 3-butenenitrile) 432 

and 89 (ethyl acetate) from one individual of each treatment on a short timescale before and 433 

after herbivorous attack. The dashed line shows the time point when herbivores were applied on 434 

the plants and treatments started. 435 

Figure 2. Mean floral emission rates of masses 33 (methanol), 68 (likely 3-butenenitrile) and 89 436 

(ethyl acetate) before and after treatment application (n=5 plants). For the after treatment 437 

floral emission rates we first calculated a mean value for each of the four post-treatment 438 

measurements per each individual plant. Then, after observing that post-treatment floral 439 

emissions were sustained and did not significantly change along successive 440 

measurements, a mean value among the four post-treatment measurements was 441 

calculated. Finally we calculated the mean and the standard error for floral emission 442 

rates of each treatment with the means obtained for the five plant replicates.  Error bars 443 

indicate standard errors of the means. Asterisks indicate significant differences between 444 

pre- and post-treatment measurements (
(
*

)
 P<0.1, * P<0.05). 445 

Figure 3. Mean relative increase (relative to 1, dotted lines) in floral emission rates of masses 446 

33 (methanol), 68 (likely 3-butenenitrile) and 89 (ethyl acetate) after treatment (n=5 plants). The 447 

whole post-treatment means calculated with the means for the four post-treatment 448 

measurements were divided by the respective pre-treatment means to obtain a relative increase 449 

in floral emission rates. Error bars indicate standard errors of the means. Asterisks indicate 450 

statistically significant relative increases (t-test, 
(
*

)
 P<0.1, * P<0.05, ** P<0.01). 451 
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