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SUMMARY 1 

• In this work we analyzed the degradation of floral scent volatiles from Brassica nigra 2 

by reaction with ozone along a distance gradient and the consequences for pollinator 3 

attraction.  4 

• For this purpose we used a reaction system comprising three reaction tubes where we 5 

conducted measurements of floral volatiles by PTR-TOF-MS and GC-MS. We also 6 

tested the effects of floral scent degradation on the responses of the generalist pollinator 7 

Bombus terrestris. 8 

• The chemical analyses revealed that supplementing air with ozone led to an increasing 9 

reduction in the concentrations of floral volatiles in air with distance from the volatile 10 

source. The results reveal different reactivities with ozone for different floral scent 11 

constituents, which emphasizes that ozone exposure not only degrades floral scents, but 12 

also changes the ratios of compounds in a scent blend. Behavioral tests revealed that 13 

floral scent was reduced in its attractiveness to pollinators after it had been exposed to 14 

120 ppb O3 over a 4.5 m distance.  15 

• The combined results of chemical analyses and behavioral responses of pollinators 16 

strongly suggest that high ozone concentrations have significant negative impacts on 17 

pollination by reducing the distance over which floral olfactory signals can be detected 18 

by pollinators. 19 

Keywords: Brassica nigra, Bombus terrestris, monoterpenes, anisaldehyde, phenol, p-20 

cymene, behavioral tests.  21 
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 22 

 23 

INTRODUCTION 24 

Volatile organic compounds (VOCs) mediate several ecological interactions between 25 

plants and other organisms (Dudareva et al., 2006; Dicke & Baldwin, 2010). One of the 26 

ecological interactions mediated by VOCs is the communication between 27 

entomophilous plants and their respective pollinators (Farré-Armengol et al., 2013). The 28 

establishment of such an interaction relies on plants producing chemical scent cues that 29 

can be identified by pollinators and facilitate communication over scales ranging from 30 

short to long-distance. These chemical cues can provide diverse information to 31 

pollinators, such as the species to which they belong, the availability and quality of 32 

rewards (Howell & Alarcón, 2007; Wright et al., 2009), flower ontogeny  (Mactavish & 33 

Menary, 1997; Goodrich et al., 2006) and pollination state (Negre et al., 2003). Floral 34 

scent cues also serve pollinators in their quest to locate the emitting source (flower) via 35 

scent trails that occur with concentration gradients (Cardé & Willis, 2008; Riffell et al., 36 

2008). 37 

Ozone is a powerful oxidizing agent and a common atmospheric pollutant in the 38 

lower atmosphere that may react with and disturb these floral scents. Tropospheric 39 

ozone concentration has significantly increased since pre-industrial era times due to 40 

anthropogenic activity (IPCC, 2001, 2007, 2013), and it is predicted to increase more in 41 

the next decades, enhanced by global warming and changes in land cover (Val Martin et 42 

al., 2014). Ozone has direct harmful effects on many living organisms including plants 43 

and animals (Mcgrath et al., 2001; Kampa & Castanas, 2008; Díaz-de-Quijano et al., 44 

2012). Ozone can have significant negative impacts on plant reproductive success via its 45 
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negative impacts on plant tissues and plant physiology (Bergweiler & Manning, 1999; 46 

Black et al., 2007). Furthermore, many recent studies have reported that ozone and 47 

other common oxidative pollutants, such as hydroxyl and nitrate radicals, affect the 48 

emissions of VOCs from plants and the interactions they mediate (Pinto et al., 2007a, 49 

2010; McFrederick et al., 2009; Blande et al., 2010, 2011; Fuentes et al., 2013). 50 

Tropospheric ozone can affect plant emissions and their effectiveness in two ways: first, 51 

by affecting plant physiology and inducing changes in the emission profiles 52 

(Andermann et al., 1999; Peñuelas & Llusia, 1999; Holopainen & Gershenzon, 2010), 53 

and second, by mixing and reacting with the emitted compounds once they are released 54 

(Holopainen & Blande, 2013; Blande et al., 2014). 55 

The oxidative degradation of the VOCs emitted by flowers may reduce their 56 

concentration in an odor plume, decreasing the distances they can travel before reaching 57 

concentrations that are not detected by foraging pollinators (McFrederick et al., 2008). 58 

Moreover, the reactivity of the individual VOCs in a blend differs both with the 59 

properties of the chemical and the properties of the oxidizing agent. Therefore, VOCs in 60 

a chemical blend may be degraded at different rates in ozone polluted (Atkinson & Arey, 61 

2003) or in diesel fume (NO and NO2) polluted environments (Girling et al., 2013), 62 

leading to changes in the original ratios of VOC in the floral scent (McFrederick et al., 63 

2009). The oxidative reactions of ozone with plant-emitted VOCs lead to the formation 64 

of new organic compounds that can be volatile and persistent in the altered volatile 65 

blend (Pinto et al., 2010). These de novo produced compounds are not part of the 66 

original scent of the species, and may induce confusion in the signal receivers, in this 67 

case pollinators, if they are able to detect its presence. All processes involving the 68 

reaction of ozone with VOCs may reduce the intensity of floral scent and provide 69 

significant additional variability to flower olfactory signals once they have been 70 
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released, potentially with negative effects on the reliability of floral scent as an 71 

attractant. 72 

The objective of this work was to analyze the effects of exposure to different ozone 73 

concentrations on the floral scent of Brassica nigra, while testing the effects of induced 74 

changes on the attraction of the generalist pollinator Bombus terrestris. The sensory 75 

abilities of bumblebees and their learning and memory capabilities are well known, 76 

which makes them one of the most suitable models for conducting behavioral studies 77 

(Chittka & Raine, 2006; Riveros & Gronenberg, 2009). Bombus terrestris is one of the 78 

most abundant and widespread bumblebee species in the West Palearctic and has a very 79 

relevant role as a pollinator in wild and cultivated plant communities (Rasmont et al., 80 

2008). The flower foraging preferences of B. terrestris display a large degree of 81 

generalism, which makes them a good pollination vector for a wide range of 82 

entomophilous plant species (Fontaine et al., 2008). We expected floral scent to suffer 83 

quantitative and qualitative changes when exposed to ozone-enriched ambient air. We 84 

hypothesized (1) that floral scents would experience a greater degree of degradation 85 

with increasing distance from the scent source under higher ozone concentrations. We 86 

also hypothesized (2) that floral VOC mixtures might experience qualitative changes 87 

due to variation in the relative ratios of the existing compounds due to differences in 88 

their reactivity times with ozone, and also due to the formation of new compounds 89 

resulting from oxidative reactions of VOCs with ozone. With respect to flower-90 

pollinator communication, we hypothesized (3) that pollinators would be more attracted 91 

to floral scent when it had not been exposed to ozone, than after being exposed to 92 

ozone-enriched ambient air over the longer distances tested.  93 

MATERIALS AND METHODS 94 
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Brassica nigra plants and flower collection  95 

The experiments were conducted from June to July 2014 at the University of Eastern 96 

Finland’s Kuopio Campus. Brassica nigra (L.) W.D.J. Koch plants were grown from 97 

seed harvested from wild populations at sites near Wageningen University, the 98 

Netherlands. Plants were grown individually in 1 L plastic pots filled with a 3:1 mix of 99 

peat and sand and grown under greenhouse conditions with an approximate regime of 100 

light/dark cycle: 18h/6h, day temperature 23°C and night temperature 18°C and relative 101 

humidity 60%-80%. The plants were watered daily and fertilized with 0.1% 5-Superex 102 

(N:P:K 19:5:20) (Kekkilä, Finland) twice per week. Seeds were sown weekly to yield a 103 

constant supply of flowering plants (20 per week) throughout the experimental period. 104 

On each sampling day a bunch of inflorescences were cut at the greenhouse, put into a 105 

glass with water and transported to the lab for chemical measurements and/or behavioral 106 

tests. 107 

 108 

Chemical measurements 109 

Experimental design 110 

We exposed the flower VOC emissions to 3 different ozone concentrations, 0, 80 and 111 

120 ppb. For each ozone concentration tested, we measured VOC concentrations with a 112 

PTR-TOF-MS at 4 distances from the scent source within the reaction system (0 m, 1.5 113 

m, 3 m and 4.5 m) (Figure 1). We repeated the measurements of VOC concentrations 114 

with eight different batches of flowers (weighing 1−2.5 g dry weight). We also sampled 115 

floral volatiles with adsorbent-filled tubes for each concentration and distance (n = 2-4) 116 

and analyzed them by GC-MS. We used STATISTICA version 8.0. (StatSoft, Inc., 117 

Tulsa, USA, 2007), to conduct general linear models testing the effect of ozone 118 
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concentration and distance on floral VOC concentrations and also on the relative ratios 119 

of terpenes. 120 

 121 

Ozone reaction system 122 

We used an ozone reaction system comprising three glass tubes of 1.5 m length and 5.5 123 

cm inner diameter that were connected in sequence with metal tubes of 4 mm inner 124 

diameter. The system allowed the collection of air at 4 different distances from the 125 

emission source (Figure 1). We used an activated carbon filter to clean the air entering 126 

the system of any VOCs. The cut flowers were put into a sealed glass jar where an 127 

incoming clean air flow of 900 mL min
-1

 was regulated with a mass flow controller 128 

(Alicat Scientific, AZ, USA). The clean air was mixed with floral volatile emissions 129 

inside the jar and was directed to the reaction system through Teflon tubing. Just before 130 

the entrance to the first reaction chamber, a tube connected to an ozone generator 131 

(Stable Ozone Generator, SOG-2; UVP, LLC-Upland, CA, USA) and carrying ozone 132 

enriched air at a mass flow controller regulated rate of 50 mL min
-1

 was joined to the 133 

tube carrying the floral volatile emissions. The first port from which air samples could 134 

be taken for chemical measurements and behavioral tests was situated just after the 135 

point that the two inlet flows mixed. The first port was named “distance 0”, after which 136 

the reaction system continued with three sequential reaction chambers, with further 137 

ports at the end of each chamber (distances 1, 2 and 3, at 1.5 m, 3 m and 4.5 m 138 

respectively) and an outlet at the end connected to an ozone scrubber. We used Teflon 139 

tubes of 4 mm inner diameter to connect the pump, the VOC filter, the ozone generator 140 

and the flower jar to the reaction system. We used an Ozone analyzer (Dasibi 1008-RS; 141 
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Dasibi Environmental Corp., Glendale, CA, USA) to calibrate and check the ozone 142 

concentrations achieved inside the reaction system.  143 

 144 

PTR-TOF-MS measurements 145 

A high-resolution proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-146 

MS 8000, Ionicon Analytik, Innsbruck, Austria) was used to monitor floral VOC 147 

concentrations. Sample air from the chamber was introduced into the PTR drift tube via 148 

a 1.5 m length (outside diameter 1/16 inch) of heated (60°C) PEEK tubing at a flow rate 149 

of 200 mL min
−1

. Hydronium ions (H3O+) were used as reagent ions to ionize organic 150 

compounds. The PTR-TOF-MS was operated under controlled conditions (2.3 mbar 151 

drift tube pressure, 600 V drift tube voltage and 60°C temperature). The raw PTR-TOF 152 

data were post-processed with the PTR-MS Viewer program (Ionicon Analytik). 153 

Concentrations were calculated by the program using a standard reaction rate constant 154 

of 2 × 10
−9

 cm
3
 s

−1
 molecule

−1
. 155 

 156 

Volatile collection and GC-MS measurements 157 

We collected air from each of the sampling ports into adsorbent-filled tubes for a more 158 

detailed analysis of the floral terpene emissions by GC-MS. The tubes were filled with 159 

adsorbents Tenax® and Carbopack™ (150 mg each; Markes International, Llantrisant, 160 

RCT, UK). A sampling air flow of 200 mL min
-1

 and sampling times of 30−40 min 161 

were used. The VOC samples were analysed by a GC-MS system (Agilent 7890A GC 162 

and 5975C VL MSD; New York, USA) with an approximate detection limit of 3 ng/mL. 163 

Trapped compounds were desorbed with an automated thermal desorber (TD-100; 164 
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Markes International Ltd, Llantrisant, UK) at 250˚C for 10 min, cryofocused at -10˚C 165 

and then transferred in a splitless mode to an HP-5 capillary column (50 m × 0.2 mm; 166 

film thickness 0.33 µm). Helium was used as a carrier gas. Oven temperature was held 167 

at 40˚C for 1 min, then programmed to increase by 5˚C min
-1

 to 210˚C, and then by 168 

20˚C min
-1

 to 250˚C under a column flow of 1.2 mL min
-1

. The column effluent was 169 

ionized by electron impact ionization at 70 eV. Mass spectra were acquired by scanning 170 

from 35-350 m/z with a scan rate of 5.38 scan/s. 171 

 172 

Testing the responses of pollinators 173 

 174 

Bombus terrestris 175 

For the behavioral tests we used the bumblebee, Bombus terrestris, which was obtained 176 

as a group of three colonies each with a queen and providing an estimated 350-400 177 

individuals, including adult workers, pupae, larvae and eggs (TRIPOL, Koppert 178 

Biological Systems, Netherlands). The bumblebees were kept in two conjoined 179 

ventilated polycarbonate cages giving a total foraging area of 1.4 m × 1 m × 0.7 m. The 180 

box containing the bumblebee colonies was put in one cage and the other cage was used 181 

to provide Brassica nigra flowers and a 50% sucrose solution to feed the bumblebees. 182 

We regularly provided fresh Brassica nigra flowers to familiarize the bumblebees with 183 

the floral scent and associated reward. The colonies remained in healthy condition and 184 

provided adult individuals that were suitable for behavioral tests throughout the 1 month 185 

period of the behavioral study. 186 

 187 
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Experimental design 188 

We conducted behavioral tests to assess the preferences of B. terrestris presented with 189 

the three following odour combinations:  190 

1. “floral scent from distance 0 at 0 ppb O3” vs. “clean air” (n = 21). 191 

2. “floral scent from distance 3 at 120 ppb O3” vs. “clean air” (n = 24). 192 

3. “floral scent from distance 0 at 120 ppb O3” vs. “floral scent from distance 3 at 193 

120 ppb O3” (n = 21).  194 

Floral scent sources were channeled from the port of the ozone exposure system 195 

corresponding with the distance and ozone treatment.  The clean air comparison was 196 

first filtered and then passed through a glass jar with a pot of water to best match the 197 

humidity of the air exiting the reaction tubes. We conducted χ
2
 tests to analyze the 198 

existence of pollinator preferences between compared air samples. We used paired t-199 

tests to compare pollinator visitation between the artificial flowers of compared air 200 

samples. 201 

 202 

Behavioral chamber 203 

Behavioral tests were conducted in a cylindrical chamber made of transparent 204 

polycarbonate with a 1 m height and 1.5 m diameter (Figure 2). The lateral walls of the 205 

chamber were covered with light green paper to avoid interferences in bumblebee 206 

behavior due to visual interferences from outside the chamber. Two lamps were used as 207 

a light source and were positioned on the top of the behavioral chamber one on each 208 

side. The chamber had a 20 cm × 30 cm window at a central point in the side. Two 209 

metal tubes of approximately 1 m length and 4 mm inner diameter were inserted into the 210 
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cage entering from the top and positioned at opposite sides of the chamber. The metal 211 

tubes were connected to the two incoming air sources to be tested against each other 212 

inside the behavioral chamber. The metal tubes had some holes in the section, which 213 

released the odour sources close to artificial inflorescences that were placed in a metal 214 

support on the floor of the chamber. The artificial inflorescences consisted of yellow 215 

non-scented paper cut into the shape of petals and attached to a thin white Teflon tube 216 

with pins; the model resembled an inflorescence of Brassica nigra. Each inflorescence 217 

consisted of 8 flowers with position rotated around the tube. A third metal tube with the 218 

same dimensions was inserted in the center of the chamber. This tube had many holes 219 

all along its length oriented to all directions and was connected to a pump to draw air 220 

from the chamber (Figure 2).  221 

 222 

Behavioral tests 223 

Before starting the behavioral tests a series of checks and calibrations were conducted. 224 

First, the reaction system was turned on and outlet emissions were monitored by PTR-225 

TOF-MS until a steady state was reached. After that we connected the two air sources 226 

that we wanted to test to the behavioral chamber. The pumps were turned on and the 227 

two incoming air flows were adjusted to 500 mL min
-1

 and the central outlet tube to 1 L 228 

min
-1

 (Figure 2). We then waited for another 30 minute period for the stabilization and 229 

homogenization of the air flows and VOC concentrations in the behavioral chamber 230 

system. For each test an individual bumblebee was collected from the colony in the dark 231 

and taken in a small pot to the adjacent lab where the behavioral chamber was housed.  232 

Each bumblebee was released from a central point of the chamber equidistant from the 233 

odour sources. At the start of the test the two lamps were turned on and the clock was 234 
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started when the bumblebee started to fly. Each bioassay was observed continually for 235 

10 minutes.  The chamber was divided into two halves – one for each odour source – 236 

and the time spent in each half was recorded. When a bumblebee spent 315 seconds or 237 

more in one of the two halves, a choice for the respective odour source was assigned. 238 

However, when the times spent in each half differed in less than 30 seconds we 239 

determined that the test resulted in no choice. We also recorded the number of visits that 240 

the bees made to the artificial inflorescences. A visit was considered to have occurred 241 

when a flying bumblebee landed on one of the artificial inflorescences. Short flight 242 

movements between flowers within the same inflorescence were not considered to be 243 

different visits. If the bumblebees left the inflorescence, flew in the open chamber and 244 

landed again, we considered it a new visit. In addition, we transformed the data on 245 

pollinator visitation into a binary variable (0/1) for the statistical analyses. We assigned 246 

the value zero when no visits were conducted to artificial flowers during the test and we 247 

assigned the value one when pollinators conducted one or more visits. Once the test 248 

finished we released the bumblebees in a separate cage to avoid using the same 249 

individual for different test replicates on the same day, and we took a new bumblebee 250 

for the next trial. 251 

 252 

RESULTS 253 

Effects of ozone on the chemistry of floral emissions 254 

Ozone concentration and distance from the floral scent source had a negative effect on 255 

the concentration of floral scent volatiles (Figure 3). Monoterpene (m/z 137.133), 256 

anisaldehyde (m/z 137.1562), and phenol (m/z 95.1194) concentrations showed very 257 

significant negative correlations with ozone concentration (P<0.0001), distance 258 
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(P<0.0001) and the interaction between ozone concentration and distance (P<0.0001). 259 

p-Cymene (m/z 135.1174) concentration also showed a very significant negative 260 

correlation with ozone concentration (P<0.0001) and distance (P=0.013). However, 261 

benzaldehyde (m/z 107.0497) concentration increased with ozone concentration (P=0.8) 262 

and distance (P=0.3), although the effects were not found to be significant (Figure 4). 263 

Under the highest ozone concentration tested, at the longest distance from the 264 

scent source (4.5 m), monoterpene concentration decreased by 26.4%, anisaldehyde 265 

decreased by 27%, phenol decreased by 29.5%, p-cymene decreased by 31% and 266 

benzaldehyde increased by 17%. These compound-specific responses lead to changes in 267 

the relative composition of floral VOC blends. A detailed analysis of the composition of 268 

floral terpene emissions by GC-MS showed gradual changes with distance when 269 

exposed to ozone, although changes were not found to be significant (Figure 5).  When 270 

exposed to increasing ozone concentrations the monoterpenes β-myrcene, β-thujene, 271 

(Z)-β-ocimene and γ-terpinene showed gradual relative increases with respect to other 272 

terpene compounds, while α-pinene gradually decreased. 273 

 274 

Pollinator responses in behavioural tests 275 

Bumblebees showed a clear orientation bias toward “floral scent from distance 0 at 0 276 

ppb O3” over “clean air” (χ
2
 test, P=0.01) (Figure 6A). From a total of 21 tests, thirteen 277 

bumblebees spent more time in the half of the arena with “floral scent from distance 0 278 

at 0 ppb O3”, three spent more time in the half with “clean air”, and five individuals did 279 

not make a clear choice.  Bumblebees showed no clear orientation bias when presented 280 

with “floral scent from distance 3 at 120 ppb O3” and “clean air” (χ
2
 test, P=0.37) 281 

(Figure 6B). From a total of 22 tests, eight bumblebees spent more time in the half with 282 
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“floral scent from distance 3 at 120 ppb O3”, twelve of them spent more time in the half 283 

with “clean air”, and two individuals did not make a clear choice. Finally, bumblebees 284 

showed a marked orientation bias toward “floral scent from distance 0 at 120 ppb O3” 285 

over “floral scent from distance 3 at 120 ppb O3” (χ
2
 test, P=0.005) (Figure 6C). From a 286 

total of 21 tests, fifteen bumblebees spent more time in the half with “floral scent from 287 

distance 0 at 120 ppb O3”, three of them spent more time in the half with “floral scent 288 

from distance 3 at 120 ppb O3”, and three individuals did not make a clear choice. 289 

 Bumblebees made landings on artificial flowers in some of the tests conducted 290 

(Figure 7). The results show that more bumblebees landed on artificial flowers 291 

associated with “floral scent from distance 0 at 0 ppb O3” than on artificial flowers 292 

associated with “clean air” (paired t-test, P=0.04) (Figure 7A). More bumblebees 293 

landed on artificial flowers associated with “floral scent from distance 3 at 120 ppb O3” 294 

than on artificial flowers associated with “clean air”, but the difference was not 295 

significant (paired t-test, P=0.08) (Figure 7B). Finally, more bumblebees landed on 296 

artificial flowers associated with “floral scent from distance 0 at 120 ppb O3” than on 297 

artificial flowers associated with “floral scent from distance 3 at 120 ppb O3” (paired t-298 

test, P=0.01) (Figure 7C). 299 

 300 

DISCUSSION 301 

Quantitative and qualitative changes in floral scents after exposure to ozone 302 

The concentrations of floral VOCs were significantly reduced with increasing distance 303 

from source when exposed to ozone enriched ambient air. We started to observe 304 

degradation of the floral volatiles emitted by B. nigra at the lower ozone level tested (80 305 

ppb) over a distance of 1.5 m. The highest degradation levels of 25 to 30% were 306 



15 
 

observed at 120 ppb O3 over a distance of 4.5 m. Ozone degradation of vegetative 307 

VOCs has been previously reported (Pinto et al., 2007a, 2007b, 2010; Blande et al., 308 

2010; Li & Blande, 2015) but, to our knowledge this is the first work to provide 309 

experimental evidence and quantification of floral scent degradation with ozone 310 

exposure. McFrederick et al. (2008) previously published a theoretical work modeling 311 

the degradation of three common floral monoterpenes under different concentrations of 312 

ozone and hydroxyl and nitrate radicals, whose predictions are mostly in accordance 313 

with our results. Girling et al. (2013) empirically demonstrated that diesel exhaust 314 

fumes, which include oxidant pollutants other than ozone, such as NO2, NO, CO and 315 

SO2, degrade floral scent volatiles that play relevant roles in the stimulation of 316 

proboscis extension reflex in honeybees. Also, several previous works have examined 317 

the ozone degradation of vegetative VOCs and showed how this can interfere with, or 318 

even disrupt some other ecological interactions of plants (Pinto et al., 2007a, 2007b; 319 

Blande et al., 2010; Li & Blande, 2015). 320 

Individual  VOCs in the blend of floral volatiles showed varying degrees of 321 

degradation, which are explained by their different reactivities with ozone (Atkinson et 322 

al., 1995; Atkinson & Arey, 2003). The range of different reaction rates with ozone 323 

displayed by VOCs in the floral scent blend suggests that ozone pollution will induce 324 

changes in the relative composition of floral blends and that these changes will increase 325 

with increasing distance from the volatile source. In fact, we detected some changes in 326 

the relative composition of terpenes in the floral scent with increasing ozone 327 

concentration and distance, although they were not found to be significant probably due 328 

to low statistical power (Figure 5).  329 

 330 
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Effects of ozone-related changes in floral scent on the attraction of pollinators 331 

Our results on the behavioral responses of B. terrestris clearly indicate a reduction in 332 

orientation toward floral scent cues after they have been exposed to ozone. B. terrestris 333 

displayed a clear orientation bias towards unaltered floral scent over clean air (Figure 334 

6A) and there were significantly more landings on the artificial flowers associated with 335 

that scent (Figure7A). This observation confirmed the usage of floral scent cues by B. 336 

terrestris and also set a baseline observation for our behavioral arena. We later 337 

compared the responses of B. terrestris to floral scent exposed to 120 ppb ozone over 338 

the longest distance of 4.5 m against clean air and pollinators showed no preference for 339 

either of the two options (Figures 6B, 7B). This clearly suggests that exposure of floral 340 

scent to high ozone concentrations led to a loss in attractiveness of the floral scent to 341 

pollinators. Finally, we compared the responses of B. terrestris presented with a choice 342 

of floral scent mixed with 120 ppb ozone at distances of 0 m and 4.5 m through the 343 

reaction chamber, and observed that pollinators clearly preferred the scent at the 0 m 344 

distance (Figure 6C) and visited the artificial flowers associated with it more frequently 345 

(Figure 7C), which strongly supports that attraction to floral scent is gradually reduced 346 

with distance under high ozone concentrations. 347 

We observed a significant degradation of floral scent cues after exposure to 348 

ozone, which may explain the loss of attractiveness to pollinators. High ozone 349 

concentrations like those tested here may cause a significant reduction in the distance 350 

that floral chemical cues can travel before reaching concentration levels that are below 351 

the olfactory detection limits of pollinators. This may be translated into a significant 352 

reduction in the distance over which floral chemical cues can be utilized by pollinators. 353 

Previous work by Girling et al. (2013) demonstrated that primary pollutants in diesel 354 

exhaust can differentially degrade the volatiles emitted by oilseed rape flowers. They 355 
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additionally showed that removal of the two most reactive compounds from the blend 356 

resulted in a loss of the proboscis extension reflex of conditioned honeybees. Although 357 

the blend modification tested was a little bit more extreme than those encountered upon 358 

natural degradation processes, the removal of those two reactive compounds provides a 359 

strong indication that floral blend alteration has an important impact on foraging 360 

behaviors. In this work, we showed that far more moderate alterations of the entire 361 

blend, not involving the full elimination of any specific component, result in a loss of 362 

attractiveness of the blend to pollinators. 363 

Qualitative changes in floral scent composition may lead to disturbance of 364 

pollinator attraction to floral odor plumes (Beyaert & Hilker, 2014). The correct 365 

recognition of plant volatile cues by foraging insects depends not only on the presence 366 

of certain compounds or the magnitude of the whole signal, but also on the ratios of the 367 

compounds that constitute the volatile blend (Bruce et al., 2005). The effects of 368 

qualitative changes in floral scents on the attraction of pollinators may depend on the 369 

reliance of pollinators on innate olfactive preferences and their olfactive learning 370 

capabilities (Cunningham et al., 2004; Schiestl & Johnson, 2013). While specialist 371 

pollinators show innate preferences towards specific blends of volatiles that are typical 372 

of their host plants, generalist pollinators are capable of learning the floral scents of the 373 

plants in the community and associate them with their floral rewards (Raguso, 2008; 374 

Riffell, 2011; Riffell et al., 2013). For this reason, it is important for reward-offering 375 

plants to maintain a good level of reliability in their floral signals for pollinators, 376 

through the maintenance of low levels of variability (Wright & Schiestl, 2009; Knauer 377 

& Schiestl, 2014). Such low levels of variability in floral traits have been postulated to 378 

be beneficial for reward-offering plants (Salzmann et al., 2007). Pollinators promote the 379 

selection of uniformity in the olfactive and visual traits of rewarding flowers, due to the 380 
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advantages that flower consistency bring to both pollinators (higher foraging efficiency) 381 

and plants (less deposition of heterospecific pollen on the stigmas) (Gegear & Laverty, 382 

2005). The qualitative changes in the relative composition of floral volatile cues caused 383 

by ozone exposure can have significant negative impacts on the correct learning and 384 

recognition of floral olfactive signals by foraging pollinators.  385 

 386 

Implications of floral scent degradation by increasing tropospheric ozone 387 

concentrations 388 

The increase in tropospheric ozone since the start of the industrial era is estimated to be 389 

around 35% with subtle differences among regions (IPCC, 2001, 2007, 2013). Mean 390 

annual tropospheric ozone concentrations over the mid latitudes of the Northern 391 

Hemisphere currently range between 20 and 45 ppb (Vingarzan, 2004). However, ozone 392 

concentrations are significantly higher in some areas (Kleinman et al., 2002), which can 393 

reach or surpass 120 ppb, the highest ozone concentration that we tested in our 394 

experiments. The effects revealed by our work may be especially relevant for those 395 

regions with high tropospheric ozone concentrations. Many insect species could be 396 

negatively affected by disruption of volatile chemical communication due to ozone 397 

pollution. In the case of pollinator species these effects would have major economic and 398 

ecological impacts. Among the plant communities experiencing the most relevant 399 

effects we may find agricultural lands close to urban areas to be reduced in pollination 400 

efficiency. The most important concerns arising from these results may include reduced 401 

crop productivity and the disruption of several ecological processes related with 402 

pollination in plant communities affected by ozone pollution. 403 

  404 
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Conclusions and future perspectives 405 

Our results strongly suggest that ozone can have significant negative effects on 406 

pollinator attraction to flowers. High ozone concentrations in ambient air caused fast 407 

degradation of B. nigra floral scent with increasing distance from the scent source, 408 

reducing the range over which flowers can be identified by pollinators. Behavioral tests 409 

conducted with B. terrestris, a common and widespread generalist pollinator, confirmed 410 

that ozone concentrations of 120 ppb, which can frequently occur near big urban areas, 411 

can strongly inhibit pollinator attraction to flowers. 412 

The effects of ozone on VOC mixtures emitted by plants have been explored in 413 

several studies and the implications for plant communication with other plants, 414 

herbivores and predators have been addressed, but the effect on air concentrations of 415 

floral VOCs has not. Therefore, further experiments to test the effects in other plant 416 

species are warranted. In addition to pollinator response tests, new experiments may 417 

also include estimates of pollination success and fruit/seed production to explore the 418 

effect of ozone exposure and the related changes in floral scent on plant reproduction. 419 

 420 
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FIGURE CAPTIONS 570 

Figure 1. Schematic of the ozone reaction system. Arrows indicate the direction of the 571 

air flow. A circled triangle represents the pump. Black boxes represent mass flow 572 

controllers. 573 
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Figure 2. Behavioral test chamber. Arrows indicate the direction of air flow. 582 
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Figure 3. Floral scent degradation by ozone. The figure shows the relative decrease in 594 

monoterpene (m/z 137.133), anisaldehyde m/z (137.1562), phenol (m/z 95.1194) and p-595 

cymene (m/z 135.1174) concentrations of Brassica nigra floral scent exposed to 596 

different ozone concentrations (0 ppb, 80 ppb, 120 ppb) at different distances from the 597 

emitter flower source (1.5 m, 3 m, 4.5 m) measured with PTR-TOFF-MS. Error bars 598 

indicate SEM (n = 8). 599 
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Figure 4. Relative increase in benzaldehyde (m/z 107.0497) concentrations of Brassica 604 

nigra floral scent exposed to different ozone concentrations (0 ppb, 80 ppb, 120 ppb) at 605 

different distances from the emitter flower source (1.5 m, 3 m, 4.5 m) measured with 606 

PTR-TOFF-MS. Error bars indicate SEM (n = 8). 607 
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Figure 5. Relative floral terpene composition (%) at different distances from scent 614 

source under different ozone concentrations measured with GC-MS (n = 2, 3, 2, 2, 4, 2, 615 

2, 4). Changes in the percentage of relative contribution of the different terpene 616 

compounds to the total terpene emissions were analyzed using general linear models, 617 

but no significant patterns of change were detected. 618 
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Figure 6. Pollinator orientation in choice tests comparing: A) floral scent (distance 0 at 627 

0 ppb O3) vs. clean air (filtered air with no flower scent) (n=21); B) floral scent 628 

(distance 3 at 120 ppb O3) vs. clean air (filtered air with no flower scent) (n=24); C) 629 

floral scent (distance 0 at 120 ppb O3) vs. floral scent (distance 3 at 120 ppb O3) (n=21). 630 

Asterisks indicate the level of significance of χ
2
 tests (*P<0.05; **P<0.005). 631 
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Figure 7. Pollinator visitation to artificial flowers for the behavioral tests comparing: A) 642 

floral scent (distance 0 at 0 ppb O3) vs. clean air (filtered air with no flower scent) 643 

(n=21); B) floral scent (distance 3 at 120 ppb O3) vs. clean air (filtered air with no 644 

flower scent) (n=24); C) floral scent (distance 0 at 120 ppb O3) vs. degraded floral scent 645 

(distance 3 at 120 ppb O3) (n=21). Asterisks indicate the level of significance of paired 646 

t-tests (*P<0.05). Error bars indicate SEM. 647 
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