223 research outputs found

    Computers, Learning Outcomes, and the Choices Facing Students

    Get PDF
    We model the tradeoff students face between devoting time to coursework and time for other activities. We show how the model can be used to identify whether computers are productive tools and whether students will learn more when using computers. We present our own empirical findings, in a case study focusing on college composition. Only one-sixth of the students in our study fall into the category indicating that the computer was a productivity enhancing tool even though more than half achieved the same or higher measure of learning.

    Energy-momentum conservation in pre-metric electrodynamics with magnetic charges

    Full text link
    A necessary and sufficient condition for energy-momentum conservation is proved within a topological, pre-metric approach to classical electrodynamics including magnetic as well as electric charges. The extended Lorentz force, consisting of mutual actions by F=(E, B) on the electric current and G=(H, D) on the magnetic current, can be derived from an energy-momentum "potential" if and only if the constitutive relation G=G(F) satisfies a certain vanishing condition. The electric-magnetic reciprocity introduced by Hehl and Obukhov is seen to define a complex structure on the tensor product of 2-form pairs (F,G) which is independent of but consistent with the Hodge star operator defined by any Lorentzian metric. Contrary to a recent claim in the literature, it does not define a complex structure on the space of 2-forms itself.Comment: 8 pages, 1 fugur

    Genetic Profiling Using Genome-Wide Significant Coronary Artery Disease Risk Variants Does Not Improve the Prediction of Subclinical Atherosclerosis: The Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study and the Health 2000 Survey – A Meta-Analysis of Three Independent Studies

    Get PDF
    Background Genome-wide association studies (GWASs) have identified a large number of variants (SNPs) associating with an increased risk of coronary artery disease (CAD). Recently, the CARDIoGRAM consortium published a GWAS based on the largest study population so far. They successfully replicated twelve already known associations and discovered thirteen new SNPs associating with CAD. We examined whether the genetic profiling of these variants improves prediction of subclinical atherosclerosis – i.e., carotid intima-media thickness (CIMT) and carotid artery elasticity (CAE) – beyond classical risk factors. Subjects and Methods We genotyped 24 variants found in a population of European ancestry and measured CIMT and CAE in 2001 and 2007 from 2,081, and 2,015 subjects (aged 30–45 years in 2007) respectively, participating in the Cardiovascular Risk in Young Finns Study (YFS). The Bogalusa Heart Study (BHS; n = 1179) was used as a replication cohort (mean age of 37.5). For additional replication, a sub-sample of 5 SNPs was genotyped for 1,291 individuals aged 46–76 years participating in the Health 2000 population survey. We tested the impact of genetic risk score (GRS24SNP/CAD) calculated as a weighted (by allelic odds ratios for CAD) sum of CAD risk alleles from the studied 24 variants on CIMT, CAE, the incidence of carotid atherosclerosis and the progression of CIMT and CAE during a 6-year follow-up. Results CIMT or CAE did not significantly associate with GRS24SNP/CAD before or after adjusting for classical CAD risk factors (p>0.05 for all) in YFS or in the BHS. CIMT and CAE associated with only one SNP each in the YFS. The findings were not replicated in the replication cohorts. In the meta-analysis CIMT or CAE did not associate with any of the SNPs. Conclusion Genetic profiling, by using known CAD risk variants, should not improve risk stratification for subclinical atherosclerosis beyond conventional risk factors among healthy young adults.Public Library of Science open acces

    Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2

    Get PDF
    The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction

    Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont

    Full text link
    Section 112(m) of the 1990 Clean Air Act Amendments, referred to as the Great Waters Program, mandated an assessment of atmospheric deposition of hazardous air pollutants (HAPs) to Lake Champlain. Mercury (Hg) was listed as a priority HAP and has continued to be a high priority for a number of national and international programs. An assessment of the magnitude and seasonal variation of atmospheric Hg levels and deposition in the Lake Champlain basin was initiated in December 1992 which included event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air. Sampling was performed at the Proctor Maple Research Center in Underhill Center, VT. The range in the annual volume-weighted mean concentration for Hg in precipitation was 7.8–10.5 ng/l for the 11-year sampling period and the average amount of Hg deposited with each precipitation event was 0.10 μg/m 2 . The average amount of Hg deposited through precipitation each year from 1993 to 2003 was 9.7 μg/m 2 /yr. A seasonal pattern for Hg in precipitation is clearly evident, with increased Hg concentrations and deposition observed during spring and summer months. While a clear trend in the 11-year event deposition record at Underhill was not observed, a significant decrease in the event max-to-monthly ratio was observed suggesting that a major source influence was controlled over time. Discrete precipitation events were responsible for significant fractions of the monthly and annual loading of Hg to the forested ecosystem in Vermont. Monthly-averaged temperatures were found to be moderately correlated with monthly volume-weighted mean Hg concentrations ( r 2 =0.61) and Hg deposition ( r 2 =0.67) recorded at the Vermont site. Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional transport from the west, southwest, and south during the warmer months.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44444/1/10646_2004_Article_6260.pd

    Estimation and Mapping of Wet and Dry Mercury Deposition Across Northeastern North America

    Full text link
    Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44443/1/10646_2004_Article_6259.pd

    Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO<sub>2</sub> rise

    Get PDF
    A rise in the atmospheric CO2 concentration of ~20 parts per million over the course of the Holocene has long been recognized as exceptional among interglacials and is in need of explanation. Previous hypotheses involved natural or anthropogenic changes in terrestrial biomass, carbonate compensation in response to deglacial outgassing of oceanic CO2, and enhanced shallow water carbonate deposition. Here, we compile new and previously published fossil-bound nitrogen isotope records from the Southern Ocean that indicate a rise in surface nitrate concentration through the Holocene. When coupled with increasing or constant export production, these data suggest an acceleration of nitrate supply to the Southern Ocean surface from underlying deep water. This change would have weakened the ocean’s biological pump that stores CO2 in the ocean interior, possibly explaining the Holocene atmospheric CO2 rise. Over the Holocene, the circum-North Atlantic region cooled, and the formation of North Atlantic Deep Water appears to have slowed. Thus, the ‘seesaw’ in deep ocean ventilation between the North Atlantic and the Southern Ocean that has been invoked for millennial-scale events, deglaciations and the last interglacial period may have also operated, albeit in a more gradual form, over the Holocene

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore