11 research outputs found

    Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis

    Get PDF
    Maternal experience of abiotic environmental factors such as temperature and light are well known to control seed dormancy in many plant species. Maternal biotic stress alters offspring defence phenotypes, but whether it also affects seed dormancy remains unexplored. We exposed Arabidopsis thaliana plants to herbivory and investigated plasticity in germination and defence phenotypes in their offspring, along with the roles of phytohormone signalling in regulating maternal effects. Maternal herbivory resulted in the accumulation of jasmonic acid-isoleucine and loss of dormancy in seeds of stressed plants. Dormancy was also reduced by engineering seed-specific accumulation of jasmonic acid in transgenic plants. Loss of dormancy was dependent on an intact jasmonate signalling pathway and was associated with increased gibberellin content and reduced abscisic acid sensitivity during germination. Altered dormancy was only observed in the first generation following herbivory, whereas defence priming was maintained for at least two generations. Herbivory generates a jasmonic acid-dependent reduction in seed dormancy, mediated by alteration of gibberellin and abscisic acid signalling. This is a direct maternal effect, operating independently from transgenerational herbivore resistance priming

    Migration Patterns, Use of Stopover Areas, and Austral Summer Movements of Swainson\u27s Hawks

    Get PDF
    From 1995 to 1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. We tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks followed three basic routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20°N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migration lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and northcentral Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Argentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens.

    Get PDF
    Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or beta-aminobutryric acid (BABA). Plants grown from JA-treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long-lasting, with significant increases in resistance sustained in plants grown from treated seed for at least eight weeks, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. Long-term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation

    Involvement of sphingosine kinase in plant cell signalling

    No full text
    In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1- phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASE DPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants

    The HIC signalling pathway links CO2 perception to stomatal development.

    No full text
    Stomatal pores on the leaf surface control both the uptake of CO2 for photosynthesis and the loss of water during transpiration. Since the industrial revolution, decreases in stomatal numbers in parallel with increases in atmospheric CO2 concentration have provided evidence of plant responses to changes in CO2 levels caused by human activity1, 2. This inverse correlation between stomatal density and CO2 concentration also holds for fossil material from the past 400 million years3 and has provided clues to the causes of global extinction events4. Here we report the identification of the Arabidopsis gene HIC (for high carbon dioxide), which encodes a negative regulator of stomatal development that responds to CO2 concentration. This gene encodes a putative 3-keto acyl coenzyme A synthase—an enzyme involved in the synthesis of very-long-chain fatty acids5. Mutant hic plants exhibit up to a 42% increase in stomatal density in response to a doubling of CO2. Our results identify a gene involved in the signal transduction pathway responsible for controlling stomatal numbers at elevated CO2

    The identification of genes involved in the stomatal response to reduced atmospheric relative humidity.

    No full text
    Stomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH. Here we report the characterization of two genes, identified during this screen, which are involved in the guard cell reduced RH signaling pathway. Both genes encode proteins known to be involved in guard cell ABA signaling. OST1 encodes a protein kinase involved in ABA-mediated stomatal closure while ABA2 encodes an enzyme involved in ABA biosynthesis. These results suggest, in contrast to previously published work, that ABA plays a role in the signal transduction pathway connecting decreases in RH to reductions in stomatal aperture. The identification of OST1 as a component required in stomatal RH and ABA signal transduction supports the proposition that guard cell signaling is organized as a network in which some intracellular signaling proteins are shared among different stimuli
    corecore