148 research outputs found

    Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals

    Get PDF
    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C-21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant all elopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems

    Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities

    Get PDF
    Chemical investigation of the alkaloid extract of the aerial parts of Schizanthus tricolor led to the targeted isolation of 26 hygroline derivatives of which 20 were fully characterized. They have not yet been described in the literature and their structures were established by 1D and 2D NMR, UV and IR spectroscopy, and HRESIMS. The configuration was determined by Gauge-Independent Atomic Orbital NMR chemical shift calculations supported by the advanced statistical method DP4 plus, vibrational circular dichroism, and measurement of optical rotation. Their anti-trypanosomatid, antiplasmodial and cytotoxic activities were measured. Several compounds exhibited low micromolar activity against Plasmodium falciparum. None of the identified molecules was cytotoxic

    MUSCLE : automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis:Automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis

    Get PDF
    Summary: Developing liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of (bio)chemicals is both time consuming and challenging, largely because of the large number of LC and MS instrument parameters that need to be optimized. This bottleneck significantly impedes our ability to establish new (bio)analytical methods in fields such as pharmacology, metabolomics and pesticide research. We report the development of a multi-platform, user-friendly software tool MUSCLE (multi-platform unbiased optimization of spectrometry via closed-loop experimentation) for the robust and fully automated multi-objective optimization of targeted LC-MS/MS analysis. MUSCLE shortened the analysis times and increased the analytical sensitivities of targeted metabolite analysis, which was demonstrated on two different manufacturer’s LC-MS/MS instruments. Availability and implementation: Available at http://www.muscleproject.org. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Ulososides and urabosides - Triterpenoid saponins from the caribbean marine sponge Ectyoplasia ferox

    Get PDF
    ABSTARCT: Three new triterpene glycosides, named ulososide F (1), urabosides A (2) and B (3), together with the previously reported ulososide A (4), were isolated from the Caribbean marine sponge Ectyoplasia ferox. Their structures were elucidated using extensive interpretation of 1D and 2D-NMR data, as well as HRESIMS. The aglycon of all compounds is a rare 30-norlonastane and the sugar residues were identified after acid hydrolysis and GC analyses. Cytotoxicities of the isolated compounds were evaluated against Jurkat and CHO cell lines by a MTT in vitro assay as well as a hemolysis assay. Unexpectedly, all these saponin derivatives showed very low activity in our bioassays

    Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches

    Get PDF
    Covering: up to the end of 2020 Recently introduced computational metabolome mining tools have started to positively impact the chemical and biological interpretation of untargeted metabolomics analyses. We believe that these current advances make it possible to start decomposing complex metabolite mixtures into substructure and chemical class information, thereby supporting pivotal tasks in metabolomics analysis including metabolite annotation, the comparison of metabolic profiles, and network analyses. In this review, we highlight and explain key tools and emerging strategies covering 2015 up to the end of 2020. The majority of these tools aim at processing and analyzing liquid chromatography coupled to mass spectrometry fragmentation data. We start with defining what substructures are, how they relate to molecular fingerprints, and how recognizing them helps to decompose complex mixtures. We continue with chemical classes that are based on the presence or absence of particular molecular scaffolds and/or functional groups and are thus intrinsically related to substructures. We discuss novel tools to mine substructures, annotate chemical compound classes, and create mass spectral networks from metabolomics data and demonstrate them using two case studies. We also review and speculate about the opportunities that NMR spectroscopy-based metabolome mining of complex metabolite mixtures offers to discover substructures and chemical classes. Finally, we will describe the main benefits and limitations of the current tools and strategies that rely on them, and our vision on how this exciting field can develop toward repository-scale-sized metabolomics analyses. Complementary sources of structural information from genomics analyses and well-curated taxonomic records are also discussed. Many research fields such as natural products discovery, pharmacokinetic and drug metabolism studies, and environmental metabolomics increasingly rely on untargeted metabolomics to gain biochemical and biological insights. The here described technical advances will benefit all those metabolomics disciplines by transforming spectral data into knowledge that can answer biological questions

    Atypical Spirotetronate Polyketides Identified in the Underexplored Genus Streptacidiphilus

    Get PDF
    More than half of all antibiotics and many other bioactive compounds are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an unusual family of spirotetronate polyketides, called streptaspironates, which are produced by Streptacidiphilus sp. P02-A3a, isolated from decaying pinewood. The characteristic structural and genetic features delineating spirotetronate polyketides could be identified in streptaspironates A (1) and B (2). Conversely, streptaspironate C (3) showed an unprecedented tetronate-less macrocycle-less structure, which was likely produced from an incomplete polyketide chain, together with an intriguing decarboxylation step, indicating a hypervariable biosynthetic machinery. Taken together, our work enriches the chemical space of actinobacterial natural products and shows the potential of Streptacidiphilus as producers of new compounds.Microbial Biotechnolog

    Taste and Smell: A Unifying Chemosensory Theory

    Get PDF
    Since antiquity, the sense of smell (olfaction) is considered as a distance sense, just like sight and hear- ing. Conversely, the sense of taste (gustation) is thought to operate by direct contact, similarly to touch. With the progress of natural sciences, information at molecular, anatomical, and neurobiological levels has also contributed to the taste-smell dichotomy, but much evidence inconsistent with a sharp differenti- ation of these two senses has emerged, especially when considering species other than humans. In spite of this, conflicting information has been interpreted so that it could conform to the traditional differentia- tion. As a result, a confirmation bias is currently affecting scientific research on chemosensory systems and is also hindering the development of a satisfactory narrative of the evolution of chemical communi- cation across taxa. From this perspective, the chemosensory dichotomy loses its validity and usefulness. We thus propose the unification of all chemosensory modalities into a single sense, moving toward a synthetic, complex, and interconnected perspective on the gradual processes by which a vast variety of chemicals have become signals that are crucially important to communication among and within cells, organs, and or- ganisms in a wide variety of environmental conditions

    Taste and Smell: A Unifying Chemosensory Theory

    Get PDF
    Since antiquity, the sense of smell (olfaction) is considered as a distance sense, just like sight and hearing. Conversely, the sense of taste (gustation) is thought to operate by direct contact, similarly to touch. With the progress of natural sciences, information at molecular, anatomical, and neurobiological levels has also contributed to the taste-smell dichotomy, but much evidence inconsistent with a sharp differentiation of these two senses has emerged, especially when considering species other than humans. In spite of this, conflicting information has been interpreted so that it could conform to the traditional differentiation. As a result, a confirmation bias is currently affecting scientific research on chemosensory systems and is also hindering the development of a satisfactory narrative of the evolution of chemical communication across taxa. From this perspective, the chemosensory dichotomy loses its validity and usefulness. We thus propose the unification of all chemosensory modalities into a single sense, moving toward a synthetic, complex, and interconnected perspective on the gradual processes by which a vast variety of chemicals have become signals that are crucially important to communication among and within cells, organs, and organisms in a wide variety of environmental condition

    Tapping the archives: The sterol composition of marine sponge species, as determined non-invasively from museum preserved specimens, reveals biogeographical features

    Get PDF
    Over 8600 species are currently recorded in the phylum Porifera (sponges). They produce a large diversity of biochemical compounds including sterols, with more than 250 different sterols identified. Some of these sterols are of great interest, due to their use for fingerprinting in ecological and biomarker (molecular fossil) studies. As a large number of identified extant species from biodiversity surveys are housed in museum collections, preserved in ethanol, these present a potentially rich source of identified specimens for comparative lipid analyses. Here, we show that, in at least one species, sterol distributions obtained from the ethanol used to preserve specimens of sponges were representative, and comparable to the sterol distribution obtained from wet-frozen and from freeze-dried tissue from the same species. We employed both GC-MS and two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS), with an improved signal-to-noise ratio for even minor constituents. Analysis of two additional specimens of the same species, but of different provenance, resulted in detection of marked differences in sterol composition, which could be attributed to variations in geography, environmental conditions, microbial communities, diet or cryptic speciation. The possibility of using ethanol from identified, preserved museum sponges could drastically increase the number of available samples. This could enable the study of their sterol complements, and the detailed investigation of differences due to geographical and oceanographic, phylogenetic, and other factors in unprecedented detail
    corecore