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Abstract 17 

Over 8,600 species are currently recorded in the phylum Porifera (sponges). They produce a 18 

large diversity of biochemical compounds including sterols, with more than 250 different 19 

sterols identified. Some of these sterols are of great interest, due to their use for fingerprinting 20 

in ecological and biomarker (molecular fossil) studies. As a large number of identified extant 21 

species from biodiversity surveys are housed in museum collections, preserved in ethanol, 22 

these present a potentially rich source of identified specimens for comparative lipid analyses. 23 

Here, we show that, in at least one species, sterol distributions obtained from the ethanol used 24 

to preserve specimens of sponges were representative, and comparable to the sterol 25 

distribution obtained from wet frozen, and from freeze dried tissue from the same species. 26 

We employed both GC-MS as well as two-dimensional gas chromatography – time of flight 27 

mass spectrometry (GC×GC-TOFMS), with an improved signal-to-noise ratio for even minor 28 

constituents. Analysis of two additional specimens of the same species, but of different 29 

provenance, resulted in detection of marked differences in sterol composition which could be 30 

attributed to variations in geography, environmental conditions, microbial communities, diet 31 

or cryptic speciation. The possibility of using ethanol from identified, preserved museum 32 

sponges could drastically increase the number of available samples. This could enable the 33 

study of their sterol complements, and the detailed investigation of differences due to 34 

geographical and oceanographic, phylogenetic and other factors in unprecedented detail.  35 

36 



Introduction 37 

The number of species in the phylum Porifera (sponges) is rapidly rising with over 8,600 38 

currently recognized species, and suggestions that there could be more than twice as many 39 

species globally (Van Soest et al., 2012). Sponges are widespread in many shallow and deep 40 

water reef systems, and, as filter feeders, they occupy a key role in the carbon cycle of marine 41 

ecosystems (Van Soest et al., 2012). The phylum  is deeply branching in the Metazoa and 42 

their phylogeny is of great interest to evolutionary biologists (Wörheide et al., 2012). 43 

Sponges are known to produce a vast number of highly diverse natural products (Genta-Jouve 44 

& Thomas, 2012), including over 200, often unusual triterpenoids and steroids (Bergmann, 45 

1949; D’Auria et al., 1993).  46 

Djerassi and Silva (1991) concluded that the composition of most sponges consists of fairly 47 

common sterols, while some contain unusual sterols. This was a result of their analyses of 48 

sponge sterols (the most common types of steroids, with a hydroxyl group on C-3, Fig. 1) by 49 

mass spectrometry and nuclear  magnetic resonance (NMR) in different specimens (De Rosa 50 

et al., 1973; Bergquist et al., 1980; Kerr & Baker, 1991). Unusual sterols include the 51 

cyclopropyl-side chain containing sterols found in sponges of the order Haplosclerida 52 

(Proudfoot & Djerassi, 1987; Gauvin et al., 1998; Giner et al., 1999), the unusual 19-53 

norsterols present in some members of the genus Axinella (Minale & Sodano, 1974; Crist & 54 

Djerassi, 1983), or the multiply alkylated side chains produced by members of the order 55 

Halichondrida (Stoilov et al., 1986a, 1986b). Of particular interest to geobiologists is 24-56 

isopropylcholesterol, which was isolated first from Pseudaxinyssa sp. (Hofheinz & 57 

Oesterhelt, 1979), now accepted as Axinyssa sp., family Halichondriidae, order Suberitida.   58 

Sponges are the only known extant organisms where this compound is present in large 59 

amounts (McCaffrey et al., 1994; Love & Summons, 2015). This finding resulted in the 60 

interpretation of high abundances of its geologically stable derivative, 24-isopropylcholestane 61 



compared to 24-n-propylcholestane in the rock record as a proxy for the abundance of 62 

Demosponges (Love et al., 2009; Kelly et al., 2011). However, the validity of this biomarker 63 

is debated (Antcliffe, 2013; Love & Summons, 2015) and should be applied with caution as 64 

small amounts of it are also produced by marine algae. Molecular clock studies of the 65 

biosynthetic genes though have recently shown that pelagophyte algae evolved the gene for 66 

the synthesis of this particular sterol later than the Cryogenian, when the first massive 67 

occurrence of this molecular fossil is observed (Gold et al., 2016). It provides a tantalizing 68 

possibility for determining the rise of animal life.  69 

As only a select number of sponge species and specimens has been analysed so far, the 70 

relationship of sterol composition with phylogeny is not entirely clear: Bergquist et al. (1991) 71 

reported a correlation, but others such as Fromont et al. (1994), concluded that sterol 72 

composition was not necessarily related to phylogeny. Future opportunities lie in combining  73 

DNA based phylogeny and elucidation of biosynthetic pathways, but in order to provide 74 

comprehensive results, a representative number of species and specimens needs to be 75 

analysed (Erpenbeck & van Soest, 2007). This is particularly important when considering that 76 

sponges do not only employ de novo biosynthesis of sterols, but are also capable of 77 

modifying dietary sterols (Bergquist, 1978; Silva et al., 1991; Silva & Djerassi, 1992). 78 

Consequently, the determining factors on the sterol composition of sponges are of high 79 

interest to geochemists and geobiologists.  80 

Analysis of sterols usually entails the extraction of collected or cultivated sponge tissue, 81 

followed by purification through a gravity column or high performance liquid column 82 

chromatography (HPLC) procedures (Popov et al., 1976). Analysis by gas chromatography-83 

mass spectrometry (GC-MS) is then usually carried out on the derivatized sterols, carrying 84 

either a trimethylsilyl group or an acetyl group (Goad & Akihisa, 1997). These 85 

derivatizations have been reported to affect the distribution of measured sterols (Mitrevski et 86 



al., 2008). However, sponge tissue can be difficult to obtain due to the necessity of sampling 87 

permits, as many locations are marine protected areas, and due to logistical reasons for 88 

sampling in deep waters (trawls, remote operated vehicles have to be employed). 89 

Identification of these sponge samples requires a taxonomist, is very time consuming and 90 

presents one of the main bottlenecks in sponge research. Therefore, analyzing large numbers 91 

of identified sponge samples for sterols would be useful for investigating and comparing 92 

sterol distributions with respect to phylogenetic relationships, identifying unusual sterols of 93 

potential biomedical interest, and of biomarker potential as a chemotaxonomy tool e.g. in the 94 

field of paleontology (Erpenbeck & van Soest, 2007).  95 

Hence, here we investigate the potential of using ethanol that has been used to preserve 96 

sponge specimens in museum collections (a standard procedure), for sterol analyses. Sponge 97 

tissue was stored in ethanol in glass jars for several years, causing polar extractable organic 98 

compounds to be leached into the solution. As the samples are usually stored in the dark and 99 

at a controlled temperature, chemical alteration is reduced to a minimum. Therefore, these 100 

collections present a valuable resource for the analysis of natural products, allowing non-101 

invasive sampling of identified specimens.  We employed conventional GC-MS and two 102 

dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-103 

TOFMS; Liu and Phillips (1991)), the latter in order to circumvent interferences due to co-104 

elutions of other polar compounds in the first dimension. Previous application of GC×GC 105 

coupled to flame ionization detection allowed unprecedented resolving power for sterols in 106 

environmental samples (Truong et al., 2003), and quantification of steroids in a urine sample 107 

(Mitrevski et al., 2008).  108 

In order to determine the suitability of ethanol, used to preserve sponge specimens, for the 109 

analysis of sterols, we analyzed ethanol from a preserved specimen of Agelas sp. collected off 110 

the Western Australian coast and subsequently stored in the dark and at 18 °C and compared 111 



it to an extract of samples of the same specimen, one of which was freeze dried and stored at 112 

18 °C and one frozen at –20 °C. We also analyzed two other species preserved by the above 113 

three methods, however, the specimens had been collected from various locations at different 114 

times. Here, we resolve these sterols by GC×GC-TOFMS; demonstrate that the ethanol 115 

collections of museum specimens can be a valuable resource for lipid and potentially other 116 

natural products research, or for large scale studies in marine chemical ecology, and discuss 117 

the differences between sponges of the same species but collected at different locations. 118 

Methodology 119 

Sampling 120 

 A specimen of the sponge Agelas sp. MF1 (family Agelasidae, order Agelasida) was 121 

collected off the south-western Australian coastline during cruises and surveys as specified 122 

(Table 1, Fig. S1). A part of the sponge was wet frozen at - 20°C, one part was preserved in 123 

75% ethanol on board, and one part was wet frozen on board and lyophilized at the Western 124 

Australian Museum. One specimen of Petrosia sp. 1 (family Petrosiidae, order Haplosclerida) 125 

and one specimen of Ecionemia sp. SS1 (family Ancorinidae, order Tetractinellida) were 126 

collected at Ningaloo (Table 1, Fig. S1) and stored in ethanol, and two specimens of each 127 

were collected at Kalbarri (Table 1, Fig. S1) and stored wet frozen at -20°C and freeze dried, 128 

respectively. 129 

The ethanol preserved (6 to 9 years, analysis in 2014, see date of collection in Table 1) and 130 

lyophilized tissue was stored in the dark at 18°C, while the frozen tissue was stored in the 131 

dark and at -20°C. The frozen, freeze dried and ethanol preserved tissue was extracted as 132 

outlined in section 2.2. 10 – 20 mL of the ethanol was sampled, dried under a stream of N2, 133 

dissolved in dichloromethane (DCM) / methanol (MeOH) 1:1 (v/v) and dried over MgSO4, 134 

dissolved to a concentration of 10 mg/mL and purified as detailed below.   135 



Tissue extraction 136 

Analysis steps are summarized in Fig. 2. Ethanol preserved tissue was dried under 137 

atmospheric pressure at 22°C, wet frozen tissue was lyophilized, and lyophilized tissue 138 

obtained from the museum was used without modification. The extraction protocol for the 139 

aliquots of the Agelas MF1 specimen are also represented in Fig. 1. Dry tissue (0.5 – 1 g) was 140 

ground with a pestle and mortar and sonicated in 10 mL DCM/MeOH 1:1 (v/v) (10 min). 141 

After centrifugation at 3,000 rpm (5 min), the supernatant was collected. This procedure was 142 

repeated twice; the combined supernatant was dried under N2 and over anhydrous MgSO4, 143 

and constituted the total lipid extract (TLE).  144 

For analysis of free sterols, 2.5 mg of TLE was subjected to gravity column chromatography, 145 

and the polar fraction was eluted from 0.8 g activated 60 mesh SiO2 with 4 mL DCM/MeOH 146 

1:1 after the apolar and aromatic compounds had been eluted with 4 mL hexane and 4 mL 147 

Hex/DCM 3:7 (v/v). The polar fraction was dried under a stream of N2 and dissolved in n-148 

hexane prior to analysis by GC-MS and GC×GC-TOFMS. For some of the extracts, free 149 

hydroxyl groups were converted to trimethylsilyl (TMS)-ethers by reaction with 50 µL 150 

pyridine and 50 µL N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) at 70°C for one hour, 151 

and evaporated to dryness under a stream of N2 before dissolving in hexane.  152 

In addition, for the Agelas samples, the total extracted, i.e. free and bound, sterols were 153 

determined. For this, 2.5 mg of the TLE was saponified: it was dissolved in 2 mL 1N KOH in 154 

MeOH and refluxed for 2 h at 80°C. 2 mL of water and 2 mL of cyclohexane were added, 155 

shaken, and the cyclohexane containing the sterols was collected. This was repeated twice 156 

and the combined cyclohexane fractions were dried, dissolved in diethylether/ethylacetate 1:1 157 

(v/v), eluted over SiO2 and dissolved in hexane for analysis. 158 



In order to determine the sterols bound in the biomass residue of the ethanol preserved 159 

Agelas, the residue of the extracted biomass was dried and refluxed in 25 mL 1N KOH in 160 

MeOH (1 h). The pH was adjusted to 6 with 2N HCl in MeOH, water was added in equal 161 

amounts to the MeOH, and the aqueous phase was extracted three times with 10 mL DCM. 162 

The combined DCM phases were dried under N2 and over MgSO4, dissolved in 163 

diethylether/ethylacetate 1:1 (v/v) and purified by elution from a silica (SiO2) column.  164 

GC-MS and GC×GC-TOFMS analyses of sterols 165 

For GC-MS, an Agilent 5973 mass-selective detector coupled to a 6890 gas chromatograph 166 

was employed, using a 30 m x 0.25 mm ID x 0.25 um film capillary column of type DB5-167 

MS, with a temperature programmed from 40 to 325°C at 10°C . min-1 and held at the final 168 

temperature for 20 min. Samples were injected in ethylacetate on a split/splitless injector in 169 

pulsed splitless mode at 320°C. The carrier gas was He at a constant flow of 1.1 mL/min. 170 

Ionization was carried out at 70 eV, with an electron multiplier voltage of 1800 V and the 171 

source kept at 230°C. Masses scanned ranged from 50 to 750 Da. Data analysis of GC-MS 172 

data was carried out using Wsearch32 (www.wsearch.com.au).  173 

For GC×GC-TOFMS, splitless injection at 310°C inlet temperature was employed, on an 174 

7890 Agilent GC modified for GC×GC, coupled to a Pegasus 4D TOF-MS with linear 175 

modulation (LECO Corporation, St. Joseph, MI) employing electron ionization (EI). Primary 176 

column was a 30 m Restek CP5-Sil of 0.25 mm inner diameter and 0.25 µm film thickness 177 

and secondary column a 1.5 m 17Sil-MS (equivalent to 50 % phenyl) of dimensions 0.18 mm 178 

/ 0.18 µm with helium as a carrier gas at a flow rate of 1.05 mL. min-1. Modulation was 179 

carried out directly on the secondary column and modulation time was 5s (0.8 s hot jet, 1.70 s 180 

cold jet). The temperature was ramped from 40°C to 300°C at a rate of 3°C . min-1, with the 181 

modulator at a 15°C and the secondary column at a 40°C offset. The Pegasus 4D was 182 



operated at 100 Hz and at a mass range of 50-650 Daltons, with the transfer line at 290°C and 183 

the ion source at 230°C. This configuration and program was optimized on the secondary 184 

column separation, as using the small differences in polarity of the sterols analyzed allowed 185 

for separation of several co-eluting compounds under these conditions. Data analysis was 186 

conducted using ChromaTOF automatic peak detection with a signal to noise ratio and peak 187 

width of 20 and 0.1 s, respectively, for small peaks and 300/0.4 s for larger peaks, areas  of 188 

TIC were used in order to calculate the area percentages of individual sterols of the total 189 

sterol area.  190 

Results and Discussion 191 

Sterol abundances 192 

The structures of the sterols detected are shown in Fig. 1 and their identification is described 193 

in the supplementary material.  194 

The ethanol from Agelas sp. MF1 contained sterols with 27, 28 and 29 carbon atoms (Fig. 3, 195 

Fig. 4, Table 2).  The sterols from the cholestane series consisted of 2, 3, 4 and 7, the sterols 196 

from the ergostane series of 6, 10, 13, 14 and 17, and the ones from the stigmasterane series 197 

9, 15, 16, 17, 23 and 26. The two sterols present in largest abundance were 4 and 20, other 198 

major sterols included 2, 6, 10, 13, 23 and 26.  199 

The ethanol from Ecionemia sp. SS1 contained a large variety of sterols, including 1 - 8, 11, 200 

12, 15, 18, 19, and 22-25 (Fig. 3, Fig. 5, Table 3). However, the sterols of both the frozen and 201 

the freeze dried samples consisted mainly of 22, with some other minor constituents (Fig. 5). 202 

The sterols obtained from the ethanol of the Petrosia specimen consisted of 2, 4, 6, 11, 15, 203 

19, 21 and 22, in a distribution largely similar to the preserved specimen. The wet frozen and 204 

lyophilized Petrosia sp. 1 contained a slightly larger variety of sterols, with also 1, 3, 5 and 8 205 



present in considerable proportions (Table 3). It is possible that some of these were not 206 

detected in the ethanol due to a very large peak of 4 and 17. The ethanol of Petrosia sp. 1 also 207 

contained a number of 3-oxosterols, which were not observed in the wet frozen and 208 

lyophilized specimens. It is possible that these were degradation products, however, they 209 

were not observed in any of the other ethanol preserved samples and it is thus more likely 210 

that they were present in the sponge. No sterols of less than 27 and more than 29 carbon 211 

atoms were detected, but it is possible that these were present in minor amounts. 212 

Comparison of extraction methods using one specimen of Agelas preserved in three different 213 

ways 214 

The Agelas MF1 specimen was split into aliquots when collected in 2007, and analysis of the 215 

wet frozen and the lyophilized samples thus allowed for a direct comparison of the sterol 216 

composition to the ethanol preserved aliquot. The same sterols were detected, with the 217 

exception of 3, which was only present in ethanol (Fig. 3 A). The distribution was slightly 218 

different, with 20 being present in larger proportions in the wet frozen, and even larger 219 

proportions in the lyophilized sample. Other differences in proportional amounts were minor. 220 

This confirms that a representative amount of sterols is leached into the preservation fluid; 221 

and that alteration during storage is minimal.  222 

In order to analyze the completeness of extraction achieved by storage in ethanol, we also 223 

extracted some of the sponge tissue that had been preserved in ethanol, and had leached the 224 

sterols. This resulted in similar sterol compositions to those observed in the ethanol (Fig. 4B). 225 

However, we obtained a slightly larger amount of sterol 20 (22.1 / 25.7 %), which, in 226 

conjunction with the larger amounts present in the wet frozen and lyophilized samples, 227 

suggests that ethanol might not completely extract 20. No ∆5,7 sterols were detected in any of 228 

the samples. Whilst these sterols are known to be chemically rather labile, they were not 229 



detected in the frozen and the lyophilized samples either, therefore this is probably not an 230 

artefact of the preservation method.  231 

When the residue of the ethanol preserved sponge after tissue extraction was subjected to 232 

saponification in order to release the more strongly bound sterols, a similar distribution to the 233 

ethanol extracted sterols was observed (Fig. 4B). However, interestingly, it was also observed 234 

that a large number of (unidentified) triterpenoids were released, as exemplified by the 235 

extracted ion current (EIC) for m/z 191, a common ion observed in many triterpenoids (Fig. 236 

S4). These compounds were thus present as more strongly bound, non-extractable lipids, or 237 

potentially were associated with symbionts. Many sponges are able to source carbon and 238 

energy from a number of symbionts they harbor within their tissue (Webster & Blackall, 239 

2009; Thacker & Freeman, 2012), many of which are known to produce bacteriohopanoids 240 

(Ourisson & Albrecht, 1992).  241 

In addition to the analysis of the free sterols, we also determined whether significant amounts 242 

of sterol esters had been extracted by ethanol leaching or DCM/MeOH extraction, and 243 

saponified the extracts of Agelas sp. MF1 in order to obtain the sum of free and bound sterols 244 

(= total). Negligible changes in their distributions were observed (Table 2, Fig. 4 B), 245 

suggesting that (i) the sterol esters are present in similar proportions to the free sterols, that 246 

(ii) there are no sterol esters, or that (iii) sterol esters are not leached into the ethanol during 247 

preservation. Distributions of extracts gained by wet or lyophilized tissue extraction in 248 

DCM/MeOH similarly showed only negligible changes in distribution upon saponification 249 

(Table 2), thus suggesting reason (i) or (ii) was the cause.  250 

Our results show that the ethanol taken from preserved museum specimens contains sterols 251 

that can be representative in type and distribution for an individual sponge. This technique 252 

could be more widely applicable and make a pool of samples accessible for larger screening 253 



studies for identification of new compounds for biomedical research, for geochemical 254 

research relying on biomarkers (‘unique’ compounds), or for ecological and phylogenetic 255 

studies investigating sterol distributions and their determining factors.  256 

Enhancement of sterol analysis by GC×GC 257 

GC×GC was first used by, and consists of the employment of two capillary columns of 258 

orthogonal selectivity, e.g. an apolar column effecting separation by volatility, followed by a 259 

polar column where retention increases with increasing polarity. The eluting compounds from 260 

the primary column are frozen for a certain period of time (the “modulation period”), usually 261 

from 2-10 seconds, and then released onto the secondary column which is shorter in length by 262 

a steep increase in temperature. This technique has, especially in the past decade, been 263 

extensively developed and applied to many fields as reviewed by e.g. Adachour et al. (2008). 264 

The advantages include an improved signal-to-noise ratio, increased separation efficiency and 265 

structured chromatograms, in which structurally similar compounds elute in roof-tile like 266 

sections, which can substantially improve compound identification, without the need for 267 

separation procedures (Eiserbeck et al., 2012; Naeher et al., 2016), and separation of 268 

structural and stereoisomers (Eiserbeck et al., 2011). Sterols are amenable to GC, show 269 

specific and varied polarities, and many potential isomers occur, which can be difficult to 270 

fully separate by one-dimensional GC without extensive pre-fractionation steps. This makes 271 

them very suitable for GC×GC-TOFMS, which allows separation not only by boiling point, 272 

but also by polarity, and hence results in a structured, two-dimensional  chromatogram with 273 

grouped compound classes. Handling of the samples for identification and voucher sample 274 

preservation in ethanol instead of for lipid analysis could introduce a number of 275 

contaminants, which can unnecessarily complicate GC-chromatograms, but can easily be 276 

separated by GC×GC. It also allows for simple separation of the 3-oxo compounds from the 277 

3-hydroxy compounds (Fig. 3 B, C), which is not possible employing one-dimensional 278 



analysis (Fig. S2, S3) as the former exhibit a higher retention time in the second dimension 279 

(polar column; Rt2). This results in additional confidence in structural identifications. 280 

Moreover, a number of different isomers were detected, such as compounds 6 / 7, which were 281 

co-eluting in one dimensional analysis (Fig. S2, S3). If some of these compounds are present 282 

in trace amounts, the signals could be difficult to deconvolute. GC×GC chromatograms also 283 

allow for sophisticated untargeted comparison of samples, thus potentially allowing 284 

untargeted cross sample comparison (Reichenbach et al., 2011; Marney et al., 2013).  285 

Further, whilst here, analysis was conducted following simple gravity column 286 

chromatography separation, GC×GC also allows the analysis of an untreated extract, thereby 287 

removing any possibilities of bias and loss of compounds present in low concentrations 288 

during the workup. With appropriate derivatization, it could also be possible to determine a 289 

range of other compounds of interest in these extracts, and of potential interest, such as 290 

alkaloids or terpenoids (cf. Erpenbeck and van Soest, 2007; Genta-Jouve and Thomas, 2012).  291 

Differences in specimens from different locations 292 

While Agelas sp. showed distributions which were unaffected by the preservation method, the 293 

sterol compositions obtained from Ecionemia sp. and Petrosia sp. specimens largely differed 294 

between the ethanol and the lyophilized and preserved specimens. In Ecionemia sp., the 295 

diversity of sterols was higher in the ethanol preserved sponge, while in Petrosia sp. the 296 

diversity was higher in the wet frozen and lyophilized sponges. This is in contrast to the 297 

results obtained from the Agelas sp. specimen. It is thus less likely that preservation methods 298 

were causing these differences, however it is possible that differences in the sponges such as 299 

proportions of spicules, and thus silica, in Ecionemia and Petrosia sp. compared to Agelas 300 

sp.,  (with comparatively fewer siliceous spicules) could have resulted in more pronounced  301 

changes in sterol composition in the two former species. In addition, sponges of the genus 302 

Petrosia are known to form reactive polyacetylenes (Cimino et al., 1989) which could be 303 



responsible for the conversion of the sterols to ketones, but are unlikely to have caused all of 304 

these differences.  305 

A more likely reason for these differences is that the results are not directly comparable as 306 

they were not derived from the same specimen, but rather from three different specimens 307 

(Table 1), of which the one preserved in ethanol was obtained from a completely different 308 

location (Fig. S1). This is in contrast to previous studies, where sterol composition was found 309 

to be species specific and independent of location (Bergquist et al., 1980; Fromont et al., 310 

1994). As sponges employ both de novo biosynthesis along with uptake and modification of 311 

dietary and symbiont produced sterols (Bergquist, 1978) these sterol differences between 312 

specimens of one species are not surprising. Habitat, depth, or times of collection are unlikely 313 

to have caused these differences: for example, all specimens of Ecionemia sp. were collected 314 

around 100 m depth in the same year. In the case of Petrosia, both the freeze dried and the 315 

ethanol preserved specimens were collected at a similar depth (around 100 m depth), while 316 

the wet frozen specimen was from 253 m depth, yet it was the ethanol preserved specimen 317 

that contained different sterols from the other two. The collection time was austral summer 318 

for all specimens (Table 1).  Subtle differences were seen in the sponge color and spicule 319 

dimensions of the ethanol preserved specimen of Petrosia, which was darker brown and had 320 

thinner spicules that the wet frozen and freeze dried samples (260 x 12 µm compared to 270 x 321 

20 µm for the largest size category of oxeas). It is possible that Petrosia sp. 1 is a species 322 

complex (i.e. a group of two or more closely related cryptic species), but this could only be 323 

determined with more detailed morphological analyses and molecular data.  324 

However, in both Petrosia sp. and Ecionemia sp., the wet frozen and lyophilized samples, 325 

which had differing sterol complements, had been collected at the same location, while the 326 

ethanol preserved sponge had been collected in a different area (Fig. S1). It is thus most 327 

likely that the sterol distributions are related to geographical or ecosystem differences, and 328 



that the sterol composition varies moderately between species across their biogeographic 329 

distributions.  Ethanol preserved specimens of Petrosia and Ecionemia were collected in the 330 

tropics at Ningaloo Reef (Carnarvon Shelf, NW Australia, 22°S) and the wet frozen and 331 

lyophilized specimens of these species were collected from Kalbarri/Zuytdorp (Dirk Hartog 332 

Shelf, Central Western Australia). The latter region is subtropical (27°S) and to ≤ 250 m 333 

depth exposed to the Leeuwin current, potentially a rich source of particulates for filter 334 

feeders such as sponges (Fromont et al., 2012), that could influence the dietary sterol uptake 335 

via organic matter supply (Silva et al., 1991; Silva & Djerassi, 1992). It is thus possible that 336 

sterol and sterane biomarker distributions derived from sponges can be indicative of 337 

environmental factors such as their diet. Also other factors varying between localities and 338 

individuals (nutrient regimes, a difference in symbionts, or microbial defense) could play a 339 

major role in activating de novo biosynthesis or modification after uptake. This could explain 340 

observations made by Kerr et al. (1991), who saw a strong variation in the sterol composition 341 

of Xestospongia muta specimens collected in close proximity, although this could also reflect 342 

cryptic speciation. 343 

Our results suggest that inferences about de novo sterol biosynthesis from the sterol 344 

composition of a sponge sample can be difficult. Moreover, there are strong indications that 345 

the sterol composition of specimens of the same species of sponges could relate to their 346 

biogeographical and oceanographic environment. Regardless of whether de novo synthesis or 347 

dietary modification lead to the presence of a certain sterol in a sponge specimen, it appears 348 

that their sterol composition is shaped by additional factors which might also need to be taken 349 

into account when interpreting the sterane biomarker record, and could provide more 350 

information about depositional environments. 351 

Comparison of sterol compositions with the literature 352 



Sponges of the genus Agelas have been investigated for sterol composition on many 353 

occasions: Santalova et al. (2004) analyzed A. mauritiana, and reported 20 sterols, including 354 

1 (trace amounts = tr), 2 (4.48 %), 3 (2.51 %), 4 (28.72 %), 5 (tr), 6 (tr), 7 (9.45 %), 8 (tr),  11 355 

(tr), 13 (9.03 %), 15 (tr), 16(1.46 %), 17 (6.01 %), 19 (2.23 %), 20 (2.23 %), 23 (tr) and 26 356 

(20.57 %), in addition to a number of other sterols, including 5α-25-desmethyl-ergost-22-en-357 

3β-ol (tr), 5α-cholesta-7,22-dien-3β-ol (tr), 5α-ergosta-7,22-dien-3β-ol (5.22 %), 5α-23-358 

methyl-ergost-22-en-3β-ol (2.04 %). This profile resembles the one for the Agelas species 359 

analyzed here, but differed slightly in relative amounts (Fig. 4). Also, sponges of the order 360 

Petrosiidae have been extensively investigated for sterol composition, and were found to 361 

contain a number of unusual, often cyclopropyl-containing sterols (Wahid Khalil et al., 1980; 362 

Gauvin et al., 1998; Giner et al., 1999; Reddy et al., 1999), which were not detected in this 363 

study. This was in agreement with Fromont et al. (1994) and Bergquist et al. (1980), who 364 

examined various species of the genus Petrosia, but could not detect any of these unusual 365 

sterols. Instead, P. pigmentosa and P. australis contained 1 (0.7 / 2.4 %), 3 (4.2 / 10 %), 4 (12 366 

/ 0.4 %), 5 (7.9 / 8.1 %), 6 (0.5 / 0 %), 7 (4.5 / 0 %), 8 (0 / 47 %), 11 (2.2 / 0.7 %), 12 (0 / 1.8 367 

%), 13 (0.4 / 0 %), 15 (1.3 / 2.6 %), 19 (31 / 2.3 %), 22 (0.3 / 13 %), 23 (1.6 / 0 %) and 26 (13 368 

/ 0 %). Other sterols detected in these specimens were (E)-stigmasta-5,24(241)-dien-3β-ol 369 

(0.1 / 7.6 %), 26-desmethyl-cholesta-5,22-dien-3β-ol (0.7 / 0.5 %), 26-desmethyl-cholest-22-370 

en-3β-ol (1.4 / 0 %), and a number of ∆5,7 sterols, which were not detected in our study. 371 

These are known to be particularly labile and it is thus possible that they had been present in 372 

the live sponge, but could not be detected in our samples. Similarity between the sterol 373 

compositions of the two Petrosia species reported by Fromont et al. (1994) was not high, and 374 

the samples investigated here also show little similarity to these species (Fig. 4). No sterol 375 

composition for the genus Ecionemia has been reported. 376 



A literature comparison of the sterols from the same genera as the species analyzed here 377 

demonstrates the similarity of Agelas sp. MF1 to A. mauritiana, and confirms the 378 

comparability of our method with results gained by more traditional methods. It is possible 379 

that sponges of the genus Agelas are so similar to each other because they rely more strongly 380 

on de novo biosynthesis, while sponges of the genus Petrosia (and Ecionemia) rely on 381 

modified dietary sterols, which causes greater variation in sterols at the genus and to a lesser 382 

extent, species level. This is in agreement with Silva et al. (1992), who attributed the unusual 383 

sterols of P. ficiformis, which were not detected in the specimens investigated here, to dietary 384 

modification in line with biosynthetic observations. However, contrastingly, Gold et al. 385 

(2016) suggested that this species does possess all the genes necessary for their production. 386 

The lack of unequivocal resolution of the phylogeny of the Haplosclerida further complicates 387 

comparison of Petrosia sp. 1 sterols with other species. Recent advances in sponge 388 

phylogeny have suggested that Petrosia is indeed a paraphyletic group (Redmond et al., 389 

2011), which might also cause the strong differences in sterol composition when comparing 390 

our results to the literature, and explain the absence of the unusual sterols of P. ficiformis in 391 

Petrosia sp. 1 and other Petrosia species (Fromont et al., 1994). In accordance with ongoing 392 

advances in sponge phylogeny, more detailed analysis of sterol complements, combined with 393 

molecular analysis, with replicates of the same species from the same and different locations 394 

or oceanographic and ecological conditions could provide valuable information for the 395 

interpretation of sterol distributions, the sterane geological record and the evolution of 396 

Porifera and the Metazoa.  397 

Conclusions 398 

The sterol composition obtained from the ethanol of museum voucher specimens presents a 399 

new method for non-invasive sampling of archived, identified sponge specimens. This can 400 



facilitate comparative studies in geochemistry, phylogeny, marine biogeography, and 401 

geobiology. While we cannot completely exclude the possibility that preservation method 402 

impacts sterol recovery, comparative analysis of different specimens of the same species of 403 

Petrosia sp. 1 and Ecionemia sp. SS1 most likely showed strong intraspecies variability, 404 

potentially due to differences in geographical location, nutrient regimes, microbial 405 

communities, the acquisition of sterols via their diet, or cryptic speciation. The relationship of 406 

biogeographical and oceanographic environment with sterol composition warrants further 407 

investigation in terms of the transfer of these features to the geological record. The sampling 408 

methodology presented here opens up the potential for non-destructive, non-invasive 409 

sampling of preserved museum specimens for analysis of sterols and potentially other 410 

compounds - currently an underutilized but vast resource for large scale biochemical studies.  411 
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Figure captions 566 

Figure 1. Sterol structures. A - Identified sterols in the three species analyzed. Sterols were 567 

named according to IUPAC nomenclature and listed in Table 2. B – Numbering of the sterol 568 

skeleton.  569 

Figure 2. Flow chart of the extractions of the different Agelas sp. MF1 aliquots. Steps for 570 

analysis of free sterols are shown in white boxes, and for analysis of free and bound or bound 571 

sterols (including saponification), in grey boxes.  572 

Figure 3. GC×GC chromatograms of the ethanol extracts of the three sponges. A – Agelas sp. 573 

MF1, B – Ecionemia sp. SS1, C – Petrosia sp. 1; dotted lines indicate 3-oxosterols. Inserts 574 

show the 1D-GC-MS chromatograms. 575 

Figure 4. Comparison of sterol distribution in extracts obtained from Agelas sp. MF1. Free 576 

sterols refers to sterols obtained from ethanol of the preserved specimen, from the wet frozen 577 

and the lyophilized sample. Total sterols includes sterols detected in the extracts after 578 

saponification, and bound sterols include those obtained from the preserved tissue after 579 

saponification of the extracted residue.  580 

Figure 5. Sterol composition of the three sponges analyzed, in comparison to published 581 

species from the same genera. Agelas sp. MF1 is compared to A. mauritiana, for Petrosia sp. 582 

1, the composition determined from the three differently preserved specimens is shown, and 583 

compared to P. australis and P. pigmentosa. For Ecionemia sp. SS1, sterol composition is as 584 

determined from the three differently preserved specimens. 1 Composition as determined by 585 

Santalova et al. (2004), 2 composition as determined by Fromont et al. (1994).  586 



Tables 

Table 1. Sample details. All sponges were collected during the following cruises and surveys: WA Marine Futures Biodiversity Project Survey Oct 2007 (WA-MFBPS), 

AIMS-WAM RV "Solander" Ningaloo Survey III Jan/Feb 2008 (AIMS-WAM III) and CSIRO RV "Southern Surveyor" Cruise SS1005 Nov/Dec 2005 (CSIRO SS1005).  

 

Species Museum 

registr. 

numbers 

Preservation 

method 

 Location Station Depth 

[m] 

Date 

collected 

Cruise/Survey 

 Start of trawl End of trawl 

          

 

Agelas sp. MF1 

Agelasidae,  
Agelasida, 

Demospongiae 

 

Z49312 Ethanol Broke Inlet 35°08'23''S 116°16'10''E  35°08'03''S 116°16'14''E Trawl 1 65 2007/10/15 WA-MFBPS 
 

Z49312 Wet frozen Broke Inlet 35°08'23''S 116°16'10''E   35°08'03''S 116°16'14''E Trawl 1 65 2007/10/15 WA-MFBPS 

 
Z49312 Freeze dried Broke Inlet 35°08'23''S 116°16'10''E   35°08'03''S 116°16'14''E Trawl 1 65 2007/10/15 WA-MFBPS 

 
 

        

 

Petrosia sp. 1 
Petrosiidae  

Haplosclerida,  

Demospongiae 

 
Z45259 Ethanol Ningaloo Reef 22°36'53''S 113°34'55''E   22°36'52''S 113°34'55''E RVS4545/2008 100 2008/02/05 AIMS-WAM III 

 

     Z35817 Wet frozen Kalbarri 27°55'42''S 113°08'16''E  27°56'01''S 113°08'38''E SS1005/099 253.5 2005/12/04 CSIRO SS1005 
 

Z35811 Freeze dried Kalbarri 27°48'48''S 113°18'39''E   27°49'05''S 113°18'39''E  SS1005/102 97 2005/12/05 CSIRO SS1005 

 
 

        
 

Ecionemia sp. SS1 

Ancorinidae,  
Tetractinellida  

Demospongiae 

 

 

Z35069 Ethanol Ningaloo South 22°04'00''S 113°48'40''E   22°04’15''S 113°48'54''E SS1005/144 103.5 2005/12/10 CSIRO SS1005 

 
Z35949 Wet frozen Zuytdorp 27°03'07''S 113°04'51''E  27°02'52''S 113°04'37''E SS1005/110 106 2005/12/06 CSIRO SS1005 

 

Z35808 Freeze dried Zuytdorp 27°03'06''S 113°06'03''E  27°02'56''S 113°05'59''E SS1005/104 97 2005/12/05 CSIRO SS1005 

 
 

        

 

 

 

        

 

 

 

 

 



Table 2. Percentages of identified sterols in Agelas samples. Pres. BM –sponge biomass preserved in ethanol. n.d. = not detected.  

Nr. Sterols 

Free sterols  Total sterols  

Ethanol Frozen Lyophil. Pres. BM  
Ethan

ol 
Frozen Lyophil. Pres. BM* 

1 Cholesta-5,22-dien-3β-ol      

2 5α-Cholest-22-en-3β-ol 7.3 5.8 4.2 3.6 1.6 12.5 7.3 5.8 4.2 

3 Cholest-5-en-3β-ol 3.7 2.5 n.d.  n.d. n.d. 2.7 3.7 2.5 n.d. 

4 5α-Cholestan-3β-ol 18.7 16.9 10.7 10.4 7.0 22.1 18.7 16.9 10.7 

5 Ergosta-5,22-dien-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

6 5α-Ergost-22-en-3β-ol 8.4 7.8 6.1 5.9 4.5 7.3 8.4 7.8 6.1 

7 5α-Cholest-7-en-3β-ol 2.0 2.1 2.0 1.5 1.9 2.4 2.0 2.1 2.0 

8 5α-Ergosta-5,24(241)-dien-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

9 C29∆-Sterol 3.6 4.8 7.1 5.7 7.4 5.9 3.6 4.8 7.1 

10 23,241-Cycloergost-5-en-3β-ol 4.8 6.0 
n.d. n.d. n.d. n.d. 

4.8 6.0 n.d. 

11 Ergost-5-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

12 5α-Ergost-24(241)-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

13 5α-Ergostan-3β-ol 6.5 8.0 2.9 2.1 1.5 3.9 6.5 8.0 2.9 

14 Ergostatrien-3β-ol 0.3 0.6 3.0 1.3 0.1  0.3 0.6 3.0 

15 Stigmasta-5,22-dien-3β-ol 4.0 3.6 7.5 2.2 1.7 4.2 4.0 3.6 7.5 

16 5α-Stigmast-22-en-3β-ol 0.7 0.8 0.5 0.6 0.7 0.9 0.7 0.8 0.5 

17 5α-Ergost-7-en-3β-ol 3.1 3.5 4.2 3.1 4.0 4.7 3.1 3.5 4.2 

18 23,241-Cyclostigmast-5-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

19 Stigmast-5-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

20 5α-Stigmasta-7,22-dien-3β-ol 21.9 22.0 34.5 51.0 54.0 24.8 21.9 22.0 34.5 

21 (E)-Stigmast-24(241)-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

22 Stigmasta-5,24(241)-dien-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

23 5α-Stigmastan-3β-ol 6.1 6.7 7.1 3.3 5.8 4.2 6.1 6.7 7.1 

24 (Z)-Stigmast-24(241)-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

25 5α-Stigmast-8-en-3β-ol 
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

26 5α-Stigmast-7-en-3ß-ol 9.0 9.0 10.1 9.5 9.8 4.4 9.0 9.0 10.1 

*Abundances represent the bound sterols only, which were obtained by saponification of the residue from extraction.  



Table 3. Percentages of identified sterols in Ecionemia and Petrosia specimens. Pres. BM –sponge biomass preserved in ethanol. 

Ecionemia sp. SS1 Petrosia sp. 1 

Nr.  Sterol name Ethanol  Frozen Lyophil. Ethanol  Frozen Lyophil. 

1 Cholesta-5,22-dien-3β-ol 2.0 1.3 2.0 n.d. 1.1 2.3 

2 5α-Cholest-22-en-3β-ol 2.7 n.d. 0.3 1.2 n.d. n.d. 

3 Cholest-5-en-3β-ol 34.1 4.1 3.5 n.d. 3.2 3.7 

4 5α-Cholestan-3β-ol 10.1 1.0 0.9 10.1 3.5 8.7 

5 Ergosta-5,22-dien-3β-ol 3.2 6.4 7.5 n.d. 3.4 8.2 

6 5α-Ergost-22-en-3β-ol 1.3 n.d. 0.5 0.9 n.d. 0.6 

7 5α-Cholest-7-en-3β-ol 1.1 n.d. n.d. n.d. n.d. n.d. 

8 5α-Ergosta-5,24(241)-dien-3β-ol 1.9 n.d. 0.3 n.d. 21.9 18.7 

9 C29∆-Sterol n.d. n.d. n.d. n.d. n.d. n.d. 

10 23,241-Cycloergost-5-en-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. 

11 Ergost-5-en-3β-ol 1.4 n.d. 0.4 68.7 37.3 50.3 

12 5α-Ergost-24(241)-en-3β-ol 3.4 n.d. n.d. n.d. n.d. n.d. 

13 5α-Ergostan-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. 

14 Ergostatrien-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. 

15 Stigmasta-5,22-dien-3β-ol 1.7 1.5 1.2 1.8 2 2.8 

16 5α-Stigmast-22-en-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. 

17 5α-Ergost-7-en-3β-ol n.d. n.d. n.d. n.d. n.d. n.d. 

18 23,241-Cyclostigmast-5-en-3β-ol 1.6 n.d. 0.4 n.d. n.d. tr 

19 Stigmast-5-en-3β-ol 13.4 3.4 1.8 11.3 24.6 n.d. 

20 5α-Stigmasta-7,22-dien-3β-ol n.d. n.d. n.d. n.d. n.d. 4.2 

21 (E)-Stigmast-24(241)-en-3β-ol n.d. n.d. n.d. 2.1 n.d. n.d. 

22 Stigmasta-5,24(241)-dien-3β-ol 19.8 79.0 81.3 4.0 3 0.0 

23 5α-Stigmastan-3β-ol 0.2 n.d. n.d. n.d. n.d. n.d. 

24 (Z)-Stigmast-24(241)-en-3β-ol 1.8 n.d. n.d. n.d. n.d. n.d. 

25 5α-Stigmast-8-en-3β-ol 0.3 3.3 n.d. n.d. n.d. n.d. 

26 5α-Stigmast-7-en-3ß-ol n.d. n.d. n.d. n.d. n.d. n.d. 
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