6,581 research outputs found

    Heavy MSSM Higgs Bosons at CMS: "LHC wedge" and Higgs-Mass Precision

    Full text link
    The search for MSSM Higgs bosons will be an important goal at the LHC. In order to analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons, we combine the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The experimental analyses are done assuming an integrated luminosity of 30 or 60 fb^-1. The results are interpreted as 5 \si discovery contours in MSSM M_A-tan_beta benchmark scenarios. Special emphasis is put on the variation of the Higgs mixing parameter mu. While the variation of mu can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta= 10, the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. An accuracy of 1-4% should be achievable, depending on M_A and tan_beta.Comment: Talk given by G.W. at EPS07 (Manchester, July 2007) and talk given by S.H. at SUSY07 (Karlsruhe, July 2007). 4 pages, 2 figure

    The Floodplain Woods of Tuscany

    Get PDF
    The contraction of lowland forests throughout Europe began in remote times and then intensified strongly with land reclamation by agriculture and urbanization during the first half of the last century. We present a map of the Floodplain Woods of Tuscany on a scale of 1:300,000 as a synthesis of that built at the scale of 1:10,000 and the methods used to obtain it. Nearly 90% of the patches contain habitats of concern to conservation, according to the Habitat Directive. The Tuscan Floodplain Woods remained prevalent in coastal areas, where some levels of protection are guaranteed by the presence of several protected areas, whereas they have practically vanished in the other parts of the regional territory. The resulting patches are very small and distant from each other, so only in-depth management of all potential floodplain forest areas, taking into consideration patches for their regeneration, can be useful to assure their conservation

    Les Houches "Physics at TeV Colliders 2003" Beyond the Standard Model Working Group: Summary Report

    Full text link
    The work contained herein constitutes a report of the ``Beyond the Standard Model'' working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 26 May--6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional models are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. An LHC search strategy for a heavy top found in many little Higgs model is presented and finally, there is an update on LHC ZZ' studies.Comment: 113 pages, ed B.C. Allanach, v5 has changes to part XV

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision

    Full text link
    The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of μ\mu can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1-4% should be achievable, which could make it possible in favourable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.Comment: 24 pages, 8 figure

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    corecore