10 research outputs found

    An empirical flood fatality model for Italy using random forest algorithm

    Get PDF
    Due to an increasing occurrence of natural hazards, such as floods, a significant number of lives are lost each year worldwide. The risk of experiencing catastrophic losses from flooding is exacerbated due to the changing climate, and the increasing anthropogenic activities. Consequently, predicting the conditions leading to fatalities is crucial in the assessment of flood risk. However, the existing modeling capabilities in this field, are limited, emphasizing the critical need for the development of such tools. Here, we show that the occurrence of flood fatalities can be estimated using a random forest (RF) algorithm applied to nine explanatory variables characterizing each fatality. Furthermore, by converting the RF model outcomes into a user-friendly tool, it is possible to predict the probability of the occurrence of flood-related fatalities, based on variables describing hazard intensity and the environmental and sociodemographic conditions that contribute to such events. Our results represent an initial attempt towards a predictive model of flood fatalities in the Italian context. They reveal the key factors that together influence flood fatalities, enabling the prediction of such occurrences. These findings can serve as a foundational framework for quantitatively assessing the risk to the population from such events and as a valuable resource for identifying strategies to mitigate flood risk

    European and Mediterranean mercury modelling: local and long-range contributions to the deposition flux

    Get PDF
    Mercury (Hg) is a global pollutant that is known to have adverse effects on human health, and most human exposure to toxic methylmercury is through fish consumption. Soluble Hg compounds in the marine environment can be methylated in the water column and enter the base of the food chain. Atmospheric deposition is the most important pathway by which Hg enters marine ecosystems. The atmospheric chemistry of Hg has been simulated over Europe and the Mediterranean for the year 2009, using the WRF/Chem model and employing two different gas phase Hg oxidation mechanisms. The contributions to the marine deposition flux from dry deposition, synoptic scale wet deposition and convective wet deposition have been determined. The Hg deposition fluxes resulting from transcontinental transport and local/regional emission sources has been determined using both Br/BrO and O3/OH atmospheric oxidation mechanisms. The two mechanisms give significantly different annual deposition fluxes (129 Mg and 266 Mg respectively) over the modelling domain. Dry deposition is more significant using the O3/OH mechanism, while proportionally convective wet deposition is enhanced using the Br/BrO mechanism. The simulations using the Br/BrO oxidation compared best with observed Hg fluxes in precipitation. Local/regional Hg emissions have the most impact within the model domain during the summer. A comparison of simulations using the 2005 and 2010 AMAP/UNEP Hg emission inventories show that although there is a decrease of 33% in anthropogenic emissions between the two reference years, the total simulated deposition in the regions diminishes by only 12%. Simulations using the 2010 inventory reproduce observations somewhat better than those using the 2005 inventory for 2009

    Model study of global mercury deposition from biomass burning

    Get PDF
    Mercury emissions from biomass burning are not well characterized and can differ significantly from year to year. This study utilizes three recent biomass burning inventories (FINNv1.0, GFEDv3.1, and GFASv1.0) and the global Hg chemistry model, ECHMERIT, to investigate the annual variation of Hg emissions, and the geographical distribution and magnitude of the resulting Hg deposition fluxes. The roles of the Hg/CO enhancement ratio, the emission plume injection height, the Hg(g)0 oxidation mechanism and lifetime, the inventory chosen, and the uncertainties with each were considered. The greatest uncertainties in the total Hg deposition were found to be associated with the Hg/CO enhancement ratio and the emission inventory employed. Deposition flux distributions proved to be more sensitive to the emission inventory and the oxidation mechanism chosen, than all the other model parametrizations. Over 75% of Hg emitted from biomass burning is deposited to the world’s oceans, with the highest fluxes predicted in the North Atlantic and the highest total deposition in the North Pacific. The net effect of biomass burning is to liberate Hg from lower latitudes and disperse it toward higher latitudes where it is eventually deposited

    Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Get PDF
    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results

    Multi-model study of mercury dispersion in the atmosphere : Atmospheric processes and model evaluation

    Get PDF
    Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM=GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM=GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg oxidation. Hence, the performance of the Hg oxidation mechanisms under study differs in the extent to which they can reproduce the various observed parameters. This variation implies possibility of more complex chemistry and multiple Hg oxidation pathways occurring concurrently in various parts of the atmosphere

    A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories

    No full text
    Human activities have altered the biogeochemical cycle of mercury (Hg) since precolonial times, and anthropogenic activities will continue to perturb the natural cycle of Hg. Current estimates suggest the atmospheric burden is three to five times greater than precolonial times. Hg in the upper ocean is estimated to have doubled over the same period. The Minamata convention seeks to reduce the impact human activities have on Hg releases to the environment. A number of the Articles in the Convention concern the development of detailed inventories for Hg emissions and releases. Using the global Hg chemical transport model, ECHMERIT, the influence of the anthropogenic emission inventory (AMAP/UNEP, EDGAR, STREETS) on global Hg deposition patterns has been investigated. The results suggest that anthropogenic Hg emissions contribute 20–25% to present-day Hg deposition, and roughly two-thirds of primary anthropogenic Hg is deposited to the world’s oceans. Anthropogenic Hg deposition is significant in the North Pacific, Mediterranean and Arctic. The results indicate immediate reductions in Hg emissions would produce benefits in the short term, as well as in the long term. The most impacted regions would be suitable to assess changes in Hg deposition resulting from implementation of the Minamata convention
    corecore