125 research outputs found

    The rational dose for MaXingShiGan decoction is crucial for its clinical effectiveness in treating bronchial pneumonia: three randomized, double-blind, dose-parallel controlled clinical studies

    Get PDF
    Objective: Evaluate the impact of adjusting the overall dose, Gypsum Fibrosum [Mineral; Gypsum] (ShiGao, SG) dose, and Prunus armeniaca L. [Rosaceae; Semen Armeniacae Amarum] (KuXingRen, KXR) dose on the efficacy of MaXingShiGan Decoction (MXSG) in treating children with bronchial pneumonia (Wind-heat Blocking the Lung), in order to provide strategy supported by high-quality evidence for the selection of rational clinical doses of MXSG.Methods: Based on the basic dose of MXSG, we conducted three randomized, double-blind, dose parallel controlled, multicenter clinical trials, involving adjustments to the overall dose, SG dose, and KXR dose, and included 120 children with bronchial pneumonia (Wind-heat Blocking the Lung) respectively. And the patients were divided into low, medium, and high dose groups in a 1:1:1 ratio, with 40 cases in each group. The intervention period lasted for 10 days. The primary outcome was the clinical cured rate, while the secondary outcomes included the effectiveness in alleviating major symptoms of bronchial pneumonia (including fever, cough, dyspnea, and phlegm congestion). And the occurrence of adverse events was recorded.Results: We first recorded and analyzed the baseline characteristics of the three studies, including age, gender, height, and so on. The results indicated that there were no significant differences among the dose groups within each study. For the study adjusting the overall dose of MXSG, the results showed that both the medium-dose group and high-dose group had significantly higher clinical cured rates compared to the low-dose group (Chi-square value 9.01, p = 0.0111). However, there was no significant benefit between the high-dose group and the medium-dose group (81.58% vs. 81.08%). Regarding phlegm congestion, excluding fever, cough, and dyspnea, both the medium-dose group and high-dose group had significantly higher clinical cured rates than the low-dose group (Chi-square value 6.31, p = 0.0426), and there was no significant benefit between the high-dose group and the medium-dose group (69.23% vs. 75.00%). A total of 5 adverse events were observed, of which only 1 case in the medium-dose group was possibly related to the experimental medication. For the study adjusted the SG dose in MXSG, the results showed that the high-dose group had the highest clinical cured rate, but the inter-group difference was not statistically significant (Chi-square value 3.36, p = 0.1864). The area under the curve (AUC) for cough in the medium-dose group was significantly lower than in the low-dose group and high-dose group (F-test value 3.14, p = 0.0471). Although no significant differences were observed in fever and dyspnea among the groups, the AUC in the high-dose group was lower than in the medium-dose and low-dose groups. In comparing the complete defervescence time, both the high-dose group (p < 0.0001) and the medium-dose group (p = 0.0015) achieved faster than the low-dose group. The high-dose group slightly outperformed the medium-dose group (0.50 (0.50, 0.80) vs. 0.80 (0.40, 1.40)), although the difference was not significant. In the medium-dose group, 1 adverse event was observed, but it was not related to the experimental medication. For the study adjusted the KXR dose in MXSG, the results showed that both the medium-dose group and high-dose group had significantly higher cured rates compared to the low-dose group (Chi-square value 47.05, p < 0.0001). However, there was no significant benefit comparing the high-dose group to the medium-dose group (90.00% vs. 92.50%). Regarding clinical symptoms, the results indicated that for cough (F-test value 3.16, p = 0.0460) and phlegm congestion (F-test value 3.84, p = 0.0243), the AUC for both the medium-dose group and high-dose group were significantly lower than in the low-dose group. Although there was benefit in the high-dose group compared to the medium-dose group, it was not statistically significant. No adverse events were observed during the study period.Conclusion: The synthesis of the three conducted clinical studies collectively indicates that for children with bronchial pneumonia (Wind-heat Blocking the Lung), the basic clinical dose of MXSG may represents an optimal intervention dose based on the accumulated clinical experience of doctors. If the dose is insufficient, the clinical effects might be compromised, but using a higher dose does not significantly enhance benefits. Concerning different symptoms, increasing the overall formula’s dose has a favorable impact on improving phlegm congestion, increasing the SG is effective in improving symptoms such as fever, cough, and dyspnea, while higher dose of KXR is effective in alleviating cough and phlegm congestion. These findings suggest that for MXSG, achieving the optimal intervention dose is crucial to achieve better clinical efficacy. For the SG and KXR, if certain symptoms are more severe, increasing the dose can be considered within safe limits, can lead to significant clinical benefits in symptom improvement. This also explains why the dose of MXSG might vary among clinical doctors, while maintaining a balance between safety and effectiveness. Of course, our study is still exploratory clinical trials, and further studies are needed to confirm our findings.Clinical Trial Registration:https://www.chictr.org.cn/index.html; Identifier: ChiCTR-TRC-13003093, ChiCTR-TRC-13003099

    A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer

    Get PDF
    Bladder cancer is the ninth most common malignancy in the world. Successful clinical management remains a challenge. In order To search for novel targeted and efficacious treatment, we sought to investigate anti-tumor activity of BI-TK suicide gene therapy system in a rat model of bladder tumors. We first constructed and tested an anaerobic Bifidobacterium infantis-mediated thymidine kinase (BI-TK) suicide gene therapy system. To test the in vivo efficacy of this system, we established a rat model of bladder tumors, which was induced by N-methyl-nitrosourea perfusion. Bifidobacterium infantis containing the HSV-TK (i.e., BI-TK) were constructed by transformation of recombinant plasmid pGEX - TK. The engineered BI-TK was injected into tumor-bearing rats via tail vein, followed by intraperitoneal injection of ganciclovir (GCV). Using the rat model of bladder tumors, we found that bladder tumor burdens were significantly lower in the rats treated with BI-TK/GCV group than that treated with normal saline control group (p <0.05). While various degrees of apoptosis of the tumor cells were detected in all groups using in situ TUNEL assay, apoptosis was mostly notable in the BI-TK/GCV treatment group. Immunohistochemical staining further demonstrated that the BI-TK/GCV treatment group had the highest level of caspase3 protein expression than that of the empty plasmid group and normal saline group (p < 0.05). Thus, our results demonstrate that the Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system can effectively inhibit rat bladder tumor growth, possibly through increasing caspase 3 expression and inducing apoptosis

    Body composition after endogenous (Cushing's syndrome) and exogenous (rheumatoid arthritis) exposure to glucocorticoids

    Get PDF
    Exposure to chronic glucocorticoid (GC) excess determines changes in body composition. The aim of the study was to compare body composition in women exposed to endogenous hypercortisolism (Cushing's syndrome, CS), exogenous glucocorticoid treatment (rheumatoid arthritis, RA) and controls. Fifty-one CS women, 26 RA women treated with low-dose prednisone (5 mg/day or 10 mg/2 days), and 78 female controls were included. Fourteen CS patients were hypercortisolemic, 37 in remission (10 required hydrocortisone substitution after surgery). Body composition parameters were measured by dual-energy X-ray absorptiometry scanning (DEXA). RA patients had a greater waist-hip ratio (WHR) (p<0.01), less lean body mass (LBM) (p<0.01), and lumbar bone mineral density (BMD) (p<0.01) than controls. CS patients, globally and those with cured disease, had more total fat (both percentage and kg) and trunk fat percentage, and less whole body-BMD than RA patients (p<0.05, p<0.01, p<0.05, respectively). Active CS patients had less whole body-BMD and more LBM than RA patients (p<0.05, p=0.01, respectively). Cured CS patients not taking hydrocortisone had more total fat [both percentage (p<0.05) and kg (p<0.05)], trunk fat percentage (p<0.05), lumbar BMD (p<0.01) than RA patients. Cured CS patients requiring hydrocortisone only differed from RA patients by smaller WHR (p<0.01). All the differences in BMD disappeared when the data were reanalyzed including only the estrogen-deficient groups. Hypercortisoliof CS determines an irreversible increase in body fat, greater than in RA. Endogenous and exogenous exposure to GC negatively affects body composition by increasing the WHR. There appears to be no additional effect on BMD in estrogen-deficient women

    A family of Type VI secretion system effector proteins that form ion-selective pores

    Get PDF
    This work was supported by the Wellcome Trust (104556/Z/14/Z, Senior Fellowship in Basic Biomedical Science to S.J.C.; 097818/Z/11/B and 109118/Z/15/Z, PhD studentships to University of Dundee), the MRC (MR/K000111X/1, New Investigator Research Grant to S.J.C.) and the Royal Society of Edinburgh (Biomedical Personal Research Fellowship to S.J.P.). We thank Roland Freudl for the gift of anti-OmpA antibody; Adam Ostrowski for construction of strains AO07 and AO08; Gal Horesh, Amy Dorward and Gavin Robertson for expert assistance; the Flow Cytometry and Cell Sorting Facility at the University of Dundee; and the Dundee Imaging Facility (supported by Wellcome Trust [097945/B/11/Z] and MRC [MR/K015869/1]) awards).Type VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores. Ssp6 inhibits bacterial growth by causing depolarisation of the inner membrane in intoxicated cells, together with increased outer membrane permeability. Reconstruction of Ssp6 activity in vitro demonstrates that it forms cation-selective pores. A survey of bacterial genomes reveals that genes encoding Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 and similar proteins represent a new family of T6SS-delivered anti-bacterial effectors.Publisher PDFPeer reviewe

    Impact of DNA methylation on trophoblast function

    Get PDF
    The influence of epigenetics is evident in many fields of medicine today. This is also true in placentology, where versatile epigenetic mechanisms that regulate expression of genes have shown to have important influence on trophoblast implantation and placentation. Such gene regulation can be established in different ways and on different molecular levels, the most common being the DNA methylation. DNA methylation has been shown today as an important predictive component in assessing clinical prognosis of certain malignant tumors; in addition, it opens up new possibilities for non-invasive prenatal diagnosis utilizing cell-free fetal DNA methods. By using a well known demethylating agent 5-azacytidine in pregnant rat model, we have been able to change gene expression and, consequently, the processes of trophoblast differentiation and placental development. In this review, we describe how changes in gene methylation effect trophoblast development and placentation and offer our perspective on use of trophoblast epigenetic research for better understanding of not only placenta development but cancer cell growth and invasion as well

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
    • 

    corecore