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Abstract — Our desire to deliver increased functionality while 

setting tighter operational and regulative boundaries has fueled a 

recent influx of highly-coupled systems. Nonetheless, our current 

capacity to successfully deliver them is still in its infancy. 

Understanding how such Designed systems are structured, along 

with how they compare to their naturally Evolved counterparts, 

can play an important role in bettering our capacity to do so. Based 

on this premise, the structural patterns underlying a wide range of 

seemingly unrelated systems is uncovered using tools from 

network science. By doing so, structural patterns emerge and are 

subsequently used to highlight both similarities and differences 

between the two classes of systems. With a focus on the Designed 

class, and assuming that increased structural variety fuels design 

uncertainty, it is shown that their adherence to statistical 

normality (i.e. expected vs. encountered patterns and statistical 

correlations between combinations of such patterns) is rather 

limited. Insight of this sort has both theoretical (context agnostic 

approaches are increasingly relevant within the domain of Systems 

Engineering, yet are rarely used) and practical (transferability of 

knowledge) implications. 

Keywords— Complexity Science, Systems Science, Complex 

Networks,  

I.  INTRODUCTION  

The pinnacle of human ingenuity lies in our ability to 

uncover natural phenomena, understand their underlying 

drivers and harvest them by engineering purposeful systems 

[Arthur, 2009]. We have championed problems found both 

within the domain of simplicity (through the paradigm of 

reductionism in the 19th century) and disorganized complexity 

(through statistical mechanics in the 20th century) [Weaver, 

1948].  Alas, modern society is increasingly faced with 

challenges driven by undesirable emergence (e.g. the nature of 

interconnectivity of various sociotechnical systems challenges 

our ability to contain epidemics across them [Pastor-Satorras 

and Vespignani, 2001, Vespignani, 2012]); non-linearity (e.g. a 

single failure can trigger cascades capable of significantly 

impacting the entire system [Lorenz, Battiston and Schweitzer, 

2009]) and limited observability [Liu, Slotine and Barabási, 

2013] force us into  transcending the uncharted territory of 

organized complexity [Weaver, 1948] where our capability to 

understand, and consequently control, is eventually challenged. 

Such challenges are commonly faced in numerous 

engineering domains – examples include software 

development, printed circuit board (PCB) design and 

construction project management. In an attempt to tackle them, 

                                                           
1 As an example, cconsider the case of Projects, where the 

dominating view is that each project is “unique endeavours” 

they are routinely divided into a set of sub-problems, each with 

interfaces and dependencies to the rest. This division represents 

the human perception to a problem [Sterman, 2000]; however, 

such linear depiction contradicts the inherent complexity of the 

systems that we desire. As a result, unintended consequences, 

driven by unwanted emergent properties (e.g. interfacing bugs 

in software [Ma, He and Du, 2005]; chaotic oscillation in PCBs 

[Magistris, Bernardo and Petrarca, 2013] and cascading failures 

in construction projects [Ellinas, Allan, Durugbo and 

Johansson, 2015]), are becoming increasingly common [Bar-

Yam, 2003, ICCPM, 2011, Punter, 2013, Venkatasubramanian, 

2011, Vespignani, 2010, Williams, 2002].  Emergence of such 

unintended behavior can frequently lead to significant losses in 

terms of man-hours, resources and often, human life.  

Mounting evidence have highlighted the link between such 

events and the complex nature of the systems that sustain them 

– partly due to the non-trivial nature of a system’s architecture 

(or topology) [May, Levin and Sugihara, 2008, Schweitzer, et 

al., 2009, Haldane and May, 2011, Helbing, 2013]. Network 

science has proven to be increasingly successful  in exploring 

the relationship between the two (emergence of unintended 

behavior and topology) [Barabási, 2011] yet its adoption by the 

Systems Engineering community has been relatively 

constrained [Bellamy and Basole, 2013, Sheard and 

Mostashari, 2009]. Contributing to its diffusion, this 

comparative study draws notions from network science to 

compare and contrast a large set of empirical systems. The 

focus of this work devolves around two fundamental questions: 

 How general, and subsequently, transferable are 

observations and techniques applied within different 

classes of complex system?   

 Is it possible that the topology and structure of some 

Designed systems result in an inherently more 

challenging effort to tame them? 

The objective of this paper is to compare the underlying 

structure of a wide range of systems, from a context agnostic 

point of view. Typically, a large set of the systems considered 

(specifically, the Designed class of systems set – see Section III 

for a definition) are analyzed from a context dependent1 point of 

view – which is typical within the engineering domain [Bar-

Yam, 1997, Ottino, 2003, Ottino, 2004]. Such view is necessary 

to develop operational tools yet has noted weaknesses in 

identifying principles that may be shared across a wide range of 

due to the unique contextual features that characterise its 

development [PMI, 2008]. 
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systems, with recent attempts adopting a complex systems view 

to counter this weakness (e.g. [Ellinas, Allan and Johansson, 

2016]). Once patterns of similarity are highlighted across 

seemingly different systems within the Designed class, a 

methodology is developed to evaluate the degree upon which 

their structure adheres to statistical normality. By statistical 

normality, we mean the compounding effect of (a) the difference 

between actual and expected concentration of dominant patterns 

of interconnections that describe its structure, and (b), statistical 

correlations between these patterns. From a theoretical point of 

view, the occurrence of common patterns across such systems 

indicates the utility of adopting context agnostic perspectives in 

identifying unifying themes across Designed systems – a view 

consistent with the recent work of [Heydari and Dalili, 2015, 

Polacek, Gianetto, Khashanah and Verma, 2012, Sheard and 

Mostashari, 2009]. From a practical point of view, the derived 

insight is relevant to the transferability of knowledge (which 

assumes that what has been encountered before can be used as a 

reasonable precursor for what will be encountered next i.e. 

variability in terms of the structural blocks of a system is 

limited). Such assumptions are commonly encountered in the 

traditional design of a number of systems, ranging from Mobile 

Wireless Networks [Paxson and Floyd, 1995, Tyrakowski and 

Palka, 2005] to crucial aspects of the entire economy [Ellinas, 

Allan and Cantle, 2015, Mandelbrot and Hudson, 2007]. 

To do so, two null hypothesis are introduced: 

 Hypothesis 1: Relevant universal characteristics, as 

observed in evolved systems, are equally applicable to 

Designed systems.  

 Hypothesis 2: Regardless of their context, Designed 

systems adhere to a statistical normality in terms of their 

underlying structure 

The article is structured as follows: a brief overview on the 

motivation and relevant literature is first presented, followed by 

the empirical dataset and the method used to assess the 

Hypotheses. The results of the analysis are subsequently 

presented, followed by a discussion and concluding remarks. 

An Appendix is also included for supporting information. 

II. THEORETICAL BAKCGROUND 

A. Motivation 

Complexity is a theme often faced by Systems Engineers 

[Polacek, Gianetto, Khashanah and Verma, 2012, Sheard and 

Mostashari, 2009, Bar-Yam, 2003]  – but what is it exactly? 

Dictionary definitions of complex include “consisting of 

interconnected or interwoven parts” and “not easy to understand 

or analyze” – one can intuitively appreciate how the former leads 

to the latter, as  one needs to describe the parts and how each 

part relates with all the rest to fully describe the state of a 

complex system [Weaver, 1948, Anderson, 1972, Geli-Mann, 

1994, Barabási, 2007]. Due to the wide abundance of complex 

                                                           
2 The reference to “technology” is used in its general sense to 

include  artefacts, processes and/or methodologies [Arthur, 

2009].  

systems [Newman, 2011] complexity science often adopts 

context agnostic tools in an attempt to identify widely applicable 

(and often universal) features across a wide range of domains. 

Despite their recent success in doing so (e.g. [May, Levin and 

Sugihara, 2008, Watts and Strogatz, 1998, Barzel and Barabási, 

2013, Barabási and Albert, 1999]) such approaches have been 

criticized on their operational limitation, precisely due to their 

context agnostic nature [Willinger, et al., 2002, Borgatti, Mehra, 

Brass and Labianca, 2009]. 

Traditional engineering adopts a markedly different 

approach – due to its heavily operational nature, there is a 

distinct focus on specificity [Bar-Yam, 1997] i.e. based on 

identification and inclusion of contextual variables that 

influence the behavior of the system (e.g. in the context of 

Systems Engineering, consider the methodology underlying the 

construction of a Causal Loop Diagram [Sterman, 2000] or the 

use of the Quality Function Deployment methodology [Chan 

and Wu, 2002]). Such approach is necessary due to nature of the 

engineering method i.e. the explicit focus on meeting a given set 

of requirements whilst satisfying a set of restrictions  – both 

being a function of the systems’ context [INCOSE, 2015, Koen, 

1985]. The surge of technological2 innovation  is a testament on 

the success of engineering [Arthur, 2009], yet this persistence 

with system specificity is not without its limitations. Recent 

concerns have being voiced around the ability of Engineering in 

general [Ottino, 2003, Ottino, 2004], and Systems Engineering 

in particular [Bar-Yam, 2003, Sheard and Mostashari, 2009], to 

cope with the design of complex systems. Indicative, Sheard and 

Mostashari [2009] note that “most systems engineers do not 

realize that the systems engineering process […] can be studied 

by complex systems methods” – contextual abstraction being an 

integral part of the latter (i.e. complex systems method) [Bar-

Yam, 1997]. 

To contribute to the capacity of Systems Engineering in the 

successful development of Designed complex systems, this 

work adopts a complexity view by leveraging Network Science 

tools [Newman, 2009] in order to compare a wide range of 

systems. In doing so, relevant insight which can guide the design 

process underlying complex systems are to be derived. To do so, 

a context agnostic perspective is imposed across a wide range of 

system, focusing on highlighting both similarities and 

differences. We emphasize that a strict engineering perspective 

(i.e. context dependent3) would inevitably lead to increasingly 

noisy results, where no coherent patters could emerge – a result 

of the highly dissimilar nature of the dataset, both between and 

within the two system classes.  

B. Complex Networks 

The study of complexity has recently been spearheaded by 

network science – an interdisciplinary domain grounded on 

principles of statistical physics, graph theory and computer 

science and a focus on real-world, of socio-technical systems 

3 In the context of Systems Engineering, typical examples of 

such context dependent approaches include NAF, DODAF, 

MODAL and Zachman  [Godfrey, 2013]. 



[Vespignani, 2012, Newman, 2011, Barabási, 2007, Mitchell, 

2006].  

To do so, systems are abstracted as networks (or graphs), 

where components, referred to as nodes, interact with each other 

via links [Bellamy and Basole, 2013, Basole, et al., 2011]. Aided 

by an unprecedented availability of data and computational 

power [Lazer, et al., 2009], complex networks has provided a 

unifying ground for identifying a number of important 

topological principles that describe the structure of a wide range 

of systems [Barabási, 2009, Newman, 2003], some of which are 

briefly reviewed below. For a deeper exposition of the area, the 

interested reader is referred to the excellent reviewing work of 

[Albert and Barabási, 2002, Boccaletti, et al., 2006, Dorogovtsev 

and Mendes, 2002, Newman, 2003]. 

It has been commonly assumed that interconnections found 

within a given system did not significantly deviate from a 

random distribution [Erdos and Rényi, 1960]. Thus, they could 

be regarded as a residual attribute of intrinsic randomness and 

consequently be regarded as irrelevant to the function of the 

system (with important implications to their design – see 

[Ottino, 2003]). Seminal work by Watts and Strogatz [1998] 

showed that in fact, real world systems were balancing between 

order and randomness [Strogatz, 2001], with a tendency to be 

highly clustered (a property of regular systems such as lattices) 

and yet exhibiting relatively small average path lengths (a 

characteristic of random graphs). Sparking a surge of work 

around the area (which subsequently gave birth to what is now 

called “Network Science” [Watts, 2004] ) the ubiquity and 

importance of this so-called “small-world” (SW) has been 

illustrate across numerous important processes including 

diffusion [Karsai, et al., 2011], collective action [Centola, 

Eguíluz and Macy, 2007] and synchronization [Latora and 

Marchiori, 2001, Wang and Chen, 2002] – note that all 

mentioned processes are of relevance to the systems included in 

this study.  

Subsequent work by Milo, et al. [2002] shifted the analysis 

focus from global measures (such as the average clustering 

coefficient and average shortest path, as used in [Watts and 

Strogatz, 1998]) to interconnectivity patterns revolving around 

3 nodes. Such patterns are widely referred to as “network 

motifs” and have been found to be statistically over (or under) 

represented in real world systems. Being the minimal4 form of 

pattern that can capture non-trivial features, network motifs are 

often referred to as the basic structural building blocks of 

complex systems [Milo, et al., 2004, Milo, et al., 2002]. It should 

be noted that even through attempts have been made to network 

motifs with network function [Alon, 2007], this relationship is 

largely debated [Ingram, Stumpf and Stark, 2006, Knabe, 

Nehaniv and Schilstra, 2008]. Hence, a distinction between 

structural and functional subgraphs will be adopted within this 

                                                           
4Theoretically, a dyad would be the minimal network structure, 

yet it’s capacity to contain useful information around 

topological features is extremely limited due to the limited 

paper, where the former will not imply the latter [Sporns and 

Kötter, 2004]. 

III. METHOD 

In the spirit of Milo, et al. [2004], the empirical dataset is 

divided based on the process that led to the systems’  design, 

giving rise to two main classes – Evolved and Designed. 

Evolved systems will be defined as a class of systems of which 

their internal structure is a result of a decentralized, co-

evolutionary process. Designed systems will be defined as the 

result of a centralized, controlled and nested architectural design 

process – they will be subsequently sub-divided in terms of their 

context, namely, Software, PCBs and Construction Projects. In 

other words, the classification between Evolved and Designed 

systems is a function of the process that led to their resulting 

form rather than the function that they are mean to fulfil (e.g. 

redistributed traffic control is in effect decentralized [Lämmer 

and Helbing, 2010], yet it is the product of a top-down, 

centralized and structured design effort, falling under the 

Designed class of systems).  

 
Fig.1. a) A construction project, mapped as a network via its 

compromising task dependencies; b) plot illustarting the heavy-

tail nature of both in and out degree distributions; c) deviation 

from the mean degree, in terms of standard deviations (z-score). 

With respect to node out-degree, note the occurance of of four 

values greater than 6 σ. The probability for one such occurance 

is in the order of 5.4 x 10-10. 

A. Data  

To ensure compatibility across systems of different domains, 

special care has been taken to ensure that the network 

abstractions are comparable i.e. nodes are functional 

components, with links represent functional dependencies 

possible states that it can offer (i.e. two nodes can either be 

connected or not).  



The entirety of Evolved networks and the sub-class of 

software networks have been attained from literature – see Table 

1. Although a limited number of PCB networks were already 

readily available from [Milo, et al., 2002], further samples were 

obtained using the same methodology i.e. by mapping the 

relationships between logical gates and inverters for a variety of 

benchmark circuit, first presented (and consequently, made 

available) through two international symposia – specifically 

ISCAS89 [Brglez, Bryan and Kozminski, 1989] and ISCAS99 

[Brglez and Drechsler, 1999].  

Table 1: Datasets used throughout this paper 

Class Node count Edge count 

Designed - Construction Projects 

Project A (1); (2); (3) 

935; (1037); 

(1093) 

1070; 

(1198); 

(1200) 

Project B (1); (2); (3); (4) 

875; (879); 

(833); (802) 

865; (867); 

(806); (810) 

Project C (1); (2); (3); (4) 

106; (109); 

(108); (147) 

105; (114); 

(113); (167) 

Project D (1); (2) 521; (514) 563; (563) 

Project E 184 216 

Project F 175 194 

Project G 312 369 

Project H 730 792 

Designed - Software 

xmms [Myers, 2003] 1032 1096 

Digital Material [Myers, 

2003] 
187 271 

MySQL [Myers, 2003] 1501 4212 

VTK [Myers, 2003] 788 1375 

AbiWord [Myers, 2003] 1096 1830 

Linux [Myers, 2003] 5420 11449 

Java source code [Ying and 

Ding, 2012] 
724 1025 

Tulip 3 [Auber, et al., 

2012] 
111 160 

Designed - PCB 

s208 [Milo, et al., 2002] 122 189 

s420 [Milo, et al., 2002] 252 399 

s838 [Milo, et al., 2002] 512 819 

b11 764 1409 

b12 1070 2088 

b13 353 611 

s1196 561 1027 

s1423 749 1238 

s1488 667 1387 

s9234 5844 8182 

s1494 661 1399 

s953 440 772 

                                                           
5 Work around projects typically adopts a process-oriented view 

e.g. [Vanhoucke, 2013]  

s5378 2993 4391 

s713 447 610 

Evolved 

Email [Guimera, et al., 

2006] 
1133 10903 

SW Citations [Batagelj and 

Mrvar, 2006] 
396 994 

Political Blog [Adamic and 

Glance, 2005] 
1490 19025 

Karate Club [Zachary, 

1977] 
63 312 

PPI Yeast [Jeong, Mason, 

Barabási and Oltvai, 2001] 
1870 4480 

Food Web [Bascompte, 

Melián and Sala, 2005] 
249 2065 

C.Elegans [Watts and 

Strogatz, 1998] 
297 2345 

 

 A notable contribution of this paper is the explicit 

consideration of Projects as complex systems5, referred to as 

task networks6 (see Fig. 1). This view that has occasionally 

surfaced within the Systems Engineering community [Sharon, 

de Weck and Dori, 2011, Vidal and Marle, 2008] yet was 

restricted to a conceptual level. To provide for a representative 

type of project, Construction Project have been used throughout 

– such projects are a core example of engineering projects, the 

latter forming the majority of modern organizational activity 

[Shenhar, 2001]. Specifically, the task network is a view 

capturing the technological aspect of a project [Baccarini, 1996] 

where each node is a task, with every functional dependency 

being represented as a link (often referred to as activity-on-node 

notation [Valls and Lino, 2001]). Note that in some cases, task 

networks were updated to reflect the on-going progress of the 

actual project – such data are parenthesized within Table 1 and 

they have played an equal role in the analysis. As a typical 

example, consider Project A, which corresponds to an 

educational institution, with an agreed cost of approximately 15 

million USD. The 1st time-shot was produced 40 days after the 

project was launched – its respective task network is composed 

of 935 nodes and 1,070 links. The 2nd time-shot was produced 

104 days after the project was started, with its respective task 

network corresponding to 1,037 nodes and 1,198 links. Finally, 

the 3rd time-shot was produced 212 days after the project was 

started, with its respective task network corresponding to 1,039 

tasks and 1,093 links. Note that in an attempt to limit potential 

inconsistencies that may arise from endogenous, sociotechnical 

factors (e.g. organizational culture, internal code of practice etc.) 

and exogenous (e.g. geopolitical and cultural peculiarities etc.), 

project data have been obtained from a single source. 

6 For details on the methodology of extracting a task network 

from a Gantt Chart, see [Ellinas, Allan, Durugbo and 

Johansson, 2015]. 



B. Methodology 

Mathematically speaking, a network can be mapped as a 

graph 𝐺 =  {{𝑁}{𝐸}} formed by the set 𝑁 of nodes 𝑖 ∈ 𝑁 and 

the set 𝐸 of links (𝑖, 𝑗) ∈ 𝐸 , indicating a link from node 𝑖 to 

node 𝑗 (but not necessarily the other way around). An adjacency 

matrix, 𝐀, is an aggregated representation of the graph’s 

structure, where 𝐀(𝑖, 𝑗) = 1 if there is a link between node 𝑖 
and 𝑗 and 0 otherwise. As the entirety of the datasets is abstracted 

as a directed networks (i.e. links have directionality), 𝐀(𝑖, 𝑗) is 

not necessarily equal to 𝐀(𝑗, 𝑖), implying the presence of 

asymmetric adjacency matrices.  

1) Hypothesis 1  

In order to evaluate Hypothesis 1, a coarser level of analysis 

is first adopted by examining the correlation between a graph’s 

diameter (𝐷) and average path length (𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒). This 

relationship can be interpreted as capturing the overall 

reachability of a network, and to an extent exemplifies the “SW” 

effect (see Fig. 3).   

Specifically, 𝐷 is defined as the longest path between a pair 

of nodes, of which any loops or reuse of a link is forbidden – 

mathematically defined in equation (1) where eccentricity, 𝜀, is 

the greatest shortest path between node 𝑖 and any other node. 

                                  𝐷 = max
𝑖∈𝑁

 {𝜀(𝑖)}                         

Similarly, 𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒  is defined as the mean shortest path from 

node 𝑖 to 𝑗, averaged over all nodes 𝑗 within the graph – 

mathematically defined in equation (2) where 𝑛 is the number of 

nodes (i.e. the cardinality of set 𝑁) and 𝑑 is the shortest path 

between 𝑖 and 𝑗.                      

𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑛
∑ 𝑑𝑖𝑗𝑗 

 Delving further into the analysis, a less aggregated mode of 

analysis is adopted by focusing at the meso level of the network. 

Consider the basic building elements of a network i.e. nodes and 

links, with their resulting combinations (so-called subgraphs) 

giving rise to the overall network topology. In terms of scale, 

subgraphs can range from a dyad up to the size of the largest 

connected component, with larger subgraphs capturing an 

increased amount of information with respect to possible 

topological features. Yet such increase in subgraph size 

significantly increases the complexity of the analysis by 

increasing the number of all possible combinations that need to 

be examined (e.g. 13 possible 3-node subgraphs; 201 possible 4-

node subgraphs etc.). Deemed to strike a satisfactory balance 

between adequate variety of combinations and analytical 

tractability, 3-node subgraphs have been used in several 

influential studies [Milo, et al., 2002, Milo, et al., 2004, Sporns 

and Kötter, 2004, Alon, 2007], earning them the moniker of 

serving as building blocks for complex networks [Milo, et al., 

2002]. It is worth noting that their use strikes a balance between 

local (using locally derived information to characterize the 

network e.g. degree) and global (using globally derived 

information to characterize the network e.g. average path length) 

levels analysis. This is because the use of 3-node subgraphs 

incorporates information of a node’s neighborhood (capturing 

basic information such as transitivity [Wasserman, 1994]) while 

being robust to global network features (e.g. bottle-neck nodes 

[Newman, 2009]) that can skew global measures. The 

breakdown of convergence in Figure 3b may be one such 

example, and provides the motivation for shifting the analysis to 

the meso level.   

 The freely-available software MAVISTO [Schreiber and 

Schwobbermeyer, 2004, Schreiber and Schwöbbermeyer, 2005] 

was employed in order to decompose each system in terms of 

the 13 possible combinations of 3-node sub-graphs and report 

counts of each one – see Fig. 2. As subgraph occurrence scales 

with network size [Valverde and Solé, 2005], obtained values 

were then normalized over the total number of subgraphs 

present, effectively computing values that we will refer to as 

subgraph concentration values. It is worth noting that the 

algorithm used allows for the potential reuse of both nodes and 

links in order to identify a subgraph. This is an important aspect 

if we are to obtain representative decomposition of each 

network. By applying a limitation on the potential of reusing 

either a node or link, significant topological features such as the 

numerous leaf nodes found in the Construction Projects’ 

networks (as evident in Fig. 1) would not be accounted for.  

 

Fig. 2. All 13 possible 3-node subgraphs. 

 Recent seminal work by Liu, Slotine and Barabási [2011] has 

introduced the notion of structural controllability, in an attempt 

to assess the inherent capacity of a network to be controlled. 

Based on this work, certain subgraphs can be considered to be 

theoretically (un) controllable, depending on their underlying 

structure. In particular, the rank of controllability matrix 𝐂, and 

whether it matches the number of nodes contained within the 

subgraph, determines the capacity of a subgraph to be controlled 

– for further details see Appendix. In the case of 3-node 

subgraphs, m3 is an example which satisfies this conditions 

(i.e. rank C = 𝑁), while m2 is an example which does not 

satisfy this condition. As such, Evolved and Designed systems 

may be further compared from a controllability point of view. 

2) Hypothesis 2 

Focusing at the meso level of analysis, the adherence to 

statistical normality of the systems will be explored in terms of 

subgraph occurrence. It is worth noting that evaluating whether 



a feature is randomly distributed does not necessarily imply that 

the process in which the system has been developed is random7. 

Rather, it can be used to identify whether a given feature can be 

explained as the result of pure randomness [Barabási, 2009]. 

This approach is widely adopted in the study of complex systems 

in general [Ellinas, Allan and Johansson, 2016, Heydari and 

Dalili, 2015, Barabási and Albert, 1999, Watts and Strogatz, 

1998], and of subgraph occurrence in particular [Milo, et al., 

2004, Milo, et al., 2002], where empirical measurements are 

compared to randomly-distributed equivalent in order to assess 

whether the two converge. 

By focusing on the four highest occurring subgraphs, QQ 

plots will be used to inspect the dispersion between actual and 

expected subgraph concentrations – the latter being derived 

based on the average occurrence of the same subgraph within its 

respective (sub) class, assuming it is normally distributed. The 

statistical correlation between subgraph concentrations of all 

possible combinations of the four main subgraphs is also 

examined using scatter plots and quantified using the Spearman 

Correlation coefficients – note that this is a non-parametric 

measure and thus, imposes no assumptions in terms of the 

underlying distribution.  

 Hypothesis 2 is grounded on the expectation that Designed 

systems will adhere to statistical normality as they have been the 

result of a controlled, bottom down and centralized design effort. 

By focusing on the dispersion between actual and expected 

subgraph concentration, one can test this hypothesis from the 

point of view of being able to predict the encountered 

concentrations. In addition, the hypothesis can be tested from a 

correlation point of view by focusing on the confidence at which 

one infer an increase in a given structural motif will influence 

another, assuming that all other variables remain unchanged. 

Results are presented in Figure 6. 

 

IV. RESULTS AND DISCUSSION 

A. Hypothesis 1 

1) Macro-Level Analysis 

The “SW” effect influences a substantial number of 

processes which are of relevance to the entirety of systems 

examined (see Section II, B) – Fig. 3a quantifies the effect by 

considering the ratio between average path length and diameter. 

Specifically, all systems follow a well-defined linear trend, 

regardless of the systems’ purpose, function, scope or age. One 

could thus infer that, at this level of aggregation, both classes 

adhere to a common organizing principle. Notably, the majority 

of the Designed class appears to dominate the higher region of 

the plot – PCBs and Construction Projects tend to occupy the 

                                                           
7 A classic debate on the origin of a feature deviating from 

statistical normality is the one between  Barabási and Albert 

[1999] and Carlson and Doyle [2002]. Specifically, both studies 

effectively assume that a feature (number of connections) of a 

designed system (Internet) is normally distributed, before 

falsifying it using empirical data. Both studies proceed to 

higher end whilst Software and Evolved networks are restricted 

to the lower end. In other words, Software and Evolved systems 

are in effect “smaller” than PCBs and Construction Project. This 

is mainly due to the acyclic, tree-like structure of the latter 

(PCBs and Construction Projects) and implies a significant 

effort to reach (and consequently, manipulate) distant nodes 

efficiently.  

 

Fig.3. Overall reachability capacity of the network (quantified 

by the average path length – y-axis) as function of: a) network 

diameter and b) number of nodes; c) plot of the mean degree (y-

axis) against the number of nodes (x-axis). 

Such differentiating behavior has important implications on 

the inherent capacity of a system to exhibit collective behavior. 

In the case of simple cascades (i.e. a single node is capable of 

influencing the state of a neighboring node) “smaller” networks 

can benefit from a higher rate of progression and hence enhance 

the capacity to be synchronized. On the other hand, such 

“smaller” networks are increasingly robust to complex cascades 

(i.e. multiple connected nodes are required to influence the state 

of a neighboring node). Assuming that the context of the system 

will dictate the distinct process that is exposed to (i.e. simple or 

complex cascade) designers may use this insight to define the 

space in which their system must lie by suitably architecting the 

underlying structure of that system. 

Interestingly, the consistency of the relationship noted in Fig. 

3a begins to break once the size of the system is taken into 

account – see Fig. 3b and 3c. With respect to the relationship 

between average path length and number of nodes, both PCBs 

and Construction Projects are defined by a steeper gradient with 

respect to the rest of the networks, which translates to increased 

sensitivity in terms of system scalability. By shifting focus to the 

relationship between average degree and number of nodes (Fig. 

3c) a tendency for scale invariability is noted across the class of 

Designed systems –this is not the case for the majority of the 

natural networks. By combining the insight of Fig.3b and 3c, 

consider the case where the capacity to influence the behavior of 

the system is a function of the ability to reach each node i.e. its 

average local capacity. As the mean degree of Designed systems 

remains scale invariant, the ability to efficiently reach distant 

nodes reduces – a result of the increasing trend of the average 

path length. In effect, this insight highlights the need to transition 

provide fundamentally different views in explaining why the 

system deviates from statistical normality, with Barabási and 

Albert [1999] proposing an effectively random process (BA 

model), whereas Carlson and Doyle [2002] argue that this 

feature reflects purposeful, engineered action (HOT model). 



from the micro-management of components to a more holistic 

approach in order to keep up with the design of large-scale 

systems. Examples of such counterintuitive insight may include 

the failure to effectively and efficiently control the progress of a 

Construction Project by merely micromanaging and optimizing 

aspects of its constituent, day-to-day tasks.   

2) Meso-Scale Analysis 

Focusing on the 3-node subgraph concentrations, the 

consistency of structural features noted at the macro level breaks 

down, with the Designed class being significantly less varied 

than the Evolved – see Fig. 4. 

 Note that Software and Construction Project networks are 

mainly acyclic (i.e. they do not contain any loops) and thus have 

access to a limited palette of subgraphs (namely m1, m2, m3 and 

m7). Conversely, PCBs are cyclic and thus have access to all 13 

possible combinations. Thus, it is rather remarkable that both 

Construction Projects and PCBs exhibit relatively similar 

concentration profiles (in terms of m1, m2 and m3), even though 

the 4th most frequent subgraph is m8 – a subgraph which is not 

available to the Construction Project sub-class. Finally, note that 

even though Software networks draw from the same potential 

subgraph pool as Construction Projects (both are acyclic) they 

have pronounced differences in the concentration of m1, m2 and 

m3. 

 

Fig.4. Mean percentile decomposition, in terms of 3-node 

subgraph concentrations, for both Evolved and Designed. The 

latter is broken down further into the three main three sub-

classes. Notice the significantly less variation found in the 

structure of the Designed class, compared to the Evolved class 

 From a controllability point of view, Fig.5 plots the 

concentration of m2 (theoretically uncontrollable) against m3 

(theoretically controllable), with each class having a distinct 

behaviour. Evidently, the Evolved class is defined by a 

balancing effect, where an increase in m2 is matched by an 

increase in m3. Interestingly, this relationship is well 

approximated by the y=x line, indicating that the effect of 

introducing more control is counteracted by an increase in the 

concentration of subgraphs that cannot be controlled. On the 

other hand, the Designed class is described by a decreasing 

trend, where an increase in the m3 concentration is matched by 

a decrease in m2.The contrasting nature of the two classes leads 

to an interesting question: is this trend the signature of 

purposeful, human effort in taming (controlling) a complex 

system? The authors expects that further work around the 

underlying mechanism that fuels this behaviour could provide 

further evidence on how these two classes differ, bridging the 

gap between the two. Nonetheless, such work is beyond the 

scope of this paper.  

 In summary, and despite results at the macro-level (Fig.3), 

analysis at the meso level (Fig. 4 and 5) indicate that the two 

(sub) classes are indeed distinct, falsifying Hypothesis 1. At the 

same time, it illustrates the utility of adopting a context agnostic 

perspective, having the potential to uncover robust patterns, with 

Fig.5 being a principal example. 

 

Fig.5. a) Plot of m2 subgraph concentration (y-axis) against m3 

(x-axis), the former being theoretically uncontrollable with the 

latter being controllable. Note the close alignment of the 

Evolved systems to the y=x line. The converse behavior is 

shown by the Designed systems, with m1 decreasing as m2 

increases; b) same plot with specific sub-classes of the Designed 

class being shown.  

B. Hypothesis 2 

Focusing on Hypothesis 2, results summarized in Fig. 6 are 

used to evaluate the extent at which systems in the Designed 

class adhere to statistical normality. Recall that for the purpose 

of this work, statistical normality is defined as the compounding 

effect of (a) the difference between actual and expected 

subgraph concentration and (b) the existence of statistical 

correlations between these patterns.  

Focusing on component (a) of statistical normality, consider 

the QQ plots found at the diagonal of Fig.5 matrix plot, where 

the y-axis represents the expected subgraph concentration of the 

four most frequent subgraphs per sub-class, and x-axis 

corresponding to the actual subgraph concentration. The 

Construction Project sub-class exhibits limited dispersion across 

the diagonal, an indication of convergence between observed 

and expected value with the notable exception of m2 

concentration. With respect to the Software sub-class, similar 

uniformity is observed, with the notable exception of m1 which 

is responsible for significant deviations. Conversely, the PCB 

sub-class exhibit the greatest deviation between observed and 



theoretical values throughout all four subgraph concentrations – 

this is rather surprisingly as PCBs tend to be more ordered in 

terms of the expected dependencies between subgraph 

concentrations (see following paragraph). Such increased 

dispersion can have important practical implications. For 

example, knowledge generation from past experience; generic 

tools and methodological applicability are all examples that 

fundamentally build on the expectation of what is to be 

encountered will resemble what has already been encountered 

and accounted for. However, as actual subgraph concentrations 

tend to deviate from expected values (in the case of PCBs, this 

effect is especially pronounced), the architecture that they 

represent (and thus, the tools that have been developed to 

account for their features) will not be applicable to the entire 

range of seemingly equivalent systems. 

Focusing on component (b) of statistical normality, the upper 

triangular of the matrix plot presents color-coded Spearman 

Correlation coefficients with respect to the relationship between 

each pair of subgraphs (with the lower triangular illustrating the 

actual relationships). All three subclasses exhibit a statistically 

significant (𝑝 ≤ 0.01) correlation between m1 and m2. 

Construction Projects further exhibit a significant correlation 

between m3 and m7 while PCBs similarly exhibit a strong 

correlation between the pair m2/m3. Thus, in this sense, both 

Construction Projects and PCBs imply a greater predictability in 

their internal structure - for ex. an increase in m2 concentration 

will fuel expectations of noting a reduction in the m3 

concentration within the PCB sub-class, assuming all other 

variables remain constant. By inspection, one can also note that 

PCBs have the highest average R2, though in absolute terms, it 

is relatively low, indicating that non-trivial interactions between 

the subgraph concentrations are at play. Nevertheless, such 

evidence can serve as proxies for practitioners in terms of project 

feasibility. For example, a small scale PCB designer would 

expect a greater success rate when transitioning to larger scale 

projects than a construction project manager or a software 

engineer due to the reduced amount of noise found between the 

interactions of its internal structural blocks.  

In summary, all 3 sub-classes of the Designed class show 

increasingly low levels of adherence to statistical normality. 

Such behavior is typically described by deviations between 

actual and expected subgraph concentrations, along with weak 

correlations across possible subgraph combinations. As a result, 

Hypothesis 2 can be falsified. 

Fig.6. Matrix scatter plots for each of the three Designed sub-

classes. The lower triangular section plots the relationship 

between all possible combinations between the four most 



frequent subgraphs – their respective Spearman Coefficient is 

color-coded on the upper triangular part, ranging from -1 

(perfect, negative, statistical dependence) to +1 (perfect, 

positive, statistical dependence). The diagonal section presents 

QQ plots where the expected subgraph concentration (y-axis) is 

plotted against the actual subgraph concentration (x-axis).   

V. LIMITATIONS AND FUTURE WORK 

This work has some limitations that provide opportunities 

for further work. Firstly this work has imposed a static view on 

the structure of the examined systems. Even through such view 

makes the analysis increasingly tractable, it is clearly a 

simplification. An increasingly realistic view is one where such 

structure is adaptive i.e. a change in the function of the system 

feeds back to its structure, forcing the structure to adapt [Gross 

and Blasius, 2008]. Future work could leverage the initiative of 

this work to explore the implications and underlying drivers of 

such adaptive behavior. As an example, consider the temporal 

data available for some of the Construction projects considered 

herein. Further work could focus on identifying structural 

difference between them and reasoning on the underlying 

process that led to these changes e.g. a change in requirements 

led to new tasks and dependencies emerging, subsequently 

affecting the structure of the underlying network.  

A second limitation of this work is the absence of a 

generative model which can explain why these structural 

similarities and/or differences across these systems arise. This 

lack arises from the explicit focus of this work on mapping the 

structure of these systems – an important perquisite for 

developing such generative models. Building on the evidence 

presented herein, future studies may deploy machine-learning 

techniques to infer plausible generative process which account 

for the extent in which contextual limitations apply for a given 

system (i.e. limited resources, need for local/global 

optimization) as a possible driver for the different structural 

profiles noted between Designed and Evolved Systems. 

VI. CONCLUSIONS 

This paper adopts a context agnostic view in order to 

compare the structural patterns of two general classes of 

systems: Designed and Evolved. Depending on the level of 

analysis, the emergence of patterns across seemingly different 

systems challenges the traditional view adopted within the 

engineering regime.  

In terms of results, this work highlights pronounced patterns 

within both Designed and Evolved classes, both between and 

within these classes. Such patterns can be leveraged to 

potentially uncover the structural patterns that dictate the 

behavior of such systems e.g. Fig. 4 highlights two distinct 

behavior in terms of the capacity of each class to be controlled – 

a highly desirable property for any Designed system. 

 Examples of such work present an opportunity for two 

distinct communities that focus on understanding (complexity 

science) and delivering such complex systems (engineering) to 

engage in a constructive dialogue if we are to better our capacity 

to efficiently deliver such systems.    
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IX. APPENDIX 

As previously defined, matrix 𝐀 (adjacency matrix) is a 𝑁 ×
𝑁 matrix that captures the underlying topology of a network. 

Furthermore, 𝐁 is an 𝑁 × 𝑀 (where 𝑀 ≤ 𝑁) matrix that 

indicates which nodes are controlled by an outside signal. Using 

this notation, [Liu, Slotine and Barabási [2011]] have proposed 

that a network is controllable if its controllability matrix  

𝐂 = [𝐁, 𝐀𝐁, 𝐀2𝐁, … , 𝐀𝑁−1𝐁]        (1A) 

has full rank i.e. rank 𝐂 = 𝑁. 

Fig. 1A: Figure captures an attempt to control (a) m1 and (b) m2 

by enforcing an external signal (𝑏1) on the lead node, 𝑎1. 

With reference to Figure 1A(a), the adjacency matrix 𝐀 of 

m2 is given by: 

𝐀 = [
0 1 1
0 0 0
0 0 0

] 

with the controllability matrix 𝐂 defined as:  

𝐂 = [𝐁, 𝐀 ∙ 𝐁, 𝐀2𝐁] = [[
1
0
0

] , [
0 1 1
0 0 0
0 0 0

] ∙ [
1
0
0

] , [
0 1 1
0 0 0
0 0 0

]

2

∙

[
1
0
0

]] = [
0 1 1
0 0 0
0 0 0

] 

Since rank 𝐂 = 1 < 𝑁, m2 is uncontrollable. Note that this 

result holds even if the control input is exerted on another node 

i.e. 𝐁 = [
0
1
0

] or 𝐁 = [
0
0
1

]. 

In the case of m3, its structure is defined as: 

𝐀 = [
0 0 0
1 0 0
0 1 0

] 

with the controllability matrix 𝐂 defined as:  

𝐂 = [𝐁, 𝐀𝐁, 𝐀2𝐁] = [[
1
0
0

] , [
0 0 0
1 0 0
0 1 0

] ∙ [
1
0
0

] , [
0 0 0
1 0 0
0 1 0

]

2

∙

[
1
0
0

]] = [
1 0 0
0 1 0
0 0 1

] 

with rank 𝐂 = 3 = 𝑁, m3 can be considered to be structurally 

controllable.  

Finally, note that in this case, both m2 and m3 are treated as 

unweighted – nonetheless these results also hold for their 

weighted instances. Further details can be found in the 

Supplementary Information, Section III of [Liu, Slotine and 

Barabási, 2011]. 


