69 research outputs found

    Real Time Relativity: exploration learning of special relativity

    Get PDF
    Real Time Relativity is a computer program that lets students fly at relativistic speeds though a simulated world populated with planets, clocks, and buildings. The counterintuitive and spectacular optical effects of relativity are prominent, while systematic exploration of the simulation allows the user to discover relativistic effects such as length contraction and the relativity of simultaneity. We report on the physics and technology underpinning the simulation, and our experience using it for teaching special relativity to first year university students

    Laboratory measurements of electrostatic solitary structures generated by electron beam injection

    Full text link
    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λDe\lambda_{De}) enabled the measurement of positive potential pulses with half-widths 4 to 25λDe\lambda_{De} and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.Comment: 5 pages, 4 figures http://link.aps.org/doi/10.1103/PhysRevLett.105.11500

    Electromagnetic Fluctuations during Fast Reconnection in a Laboratory Plasma

    Get PDF
    Clear evidence for a positive correlation is established between the magnitude of magnetic fluctuations in the lower-hybrid frequency range and enhancement of reconnection rates in a well-controlled laboratory plasma. The fluctuations belong to the right-hand polarized whistler wave branch, propagating obliquely to the reconnecting magnetic field, with a phase velocity comparable to the relative drift velocity between electrons and ions. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature in three dimensions.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Ion acoustic wave experiments in a high school plasma physics laboratory

    Get PDF
    We describe a successful alliance between a university and several high schools. The alliance is centered on a laboratory experiment constructed by students and faculty. The experiment involves sophisticated concepts and equipment not readily available in high schools. Much of the experiment is directly related to the science and mathematics learned in high school, with opportunities to extend their understanding by applying it to a research experience. The experiment is in plasma physics, but a similar alliance can be implemented in any area of science. Although the number of high school students affected by any one alliance is small, the impact is potentially large in the scientific life of a participating student or teacher

    Morphology and density of post-CME current sheets

    Full text link
    Eruption of a coronal mass ejection (CME) drags and "opens" the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and the field relaxation by magnetic reconnection. We analyze physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to check if the interpretation of this phenomenon in terms of reconnecting current sheet is consistent with the observations. The study is focused on measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of rays indicates that they occur as a consequence of Petschek-like reconnection in the large scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km s1^{-1}, consistent with the narrow opening-angle of rays, adding up to a few degrees. The density of rays is an order of magnitude larger than in the ambient corona. The density-excess measurements are compared with the results of the analytical model in which the Petschek-like reconnection geometry is applied to the vertical current sheet, taking into account the decrease of the external coronal density and magnetic field with height. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to larger heights by the reconnection outflow

    Wind anisotropies and GRB progenitors

    Get PDF
    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M_\odot star with Ω/Ωcrit=0.75\Omega/\Omega_{\rm crit}=0.75 on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at ZZ=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette
    corecore