
                                                              

University of Dundee

On the Magnetic Squashing Factor and the Lie Transport of Tangents

Scott, Roger B. ; Pontin, David; Hornig, Gunnar

Published in:
Astrophysical Journal

DOI:
10.3847/1538-4357/aa8a64

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Scott, R., Pontin, D., & Hornig, G. (2017). On the Magnetic Squashing Factor and the Lie Transport of Tangents.
Astrophysical Journal, 848(2), 1-12. [117]. DOI: 10.3847/1538-4357/aa8a64

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Dec. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/132208163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3847/1538-4357/aa8a64
http://discovery.dundee.ac.uk/portal/en/research/on-the-magnetic-squashing-factor-and-the-lie-transport-of-tangents(3f1533a1-9613-4c77-9ee6-caf8fd16609d).html


On the Magnetic Squashing Factor and the Lie Transport of Tangents

Roger B. Scott , David I. Pontin , and Gunnar Hornig
University of Dundee Nethergate, Dundee, UK

Received 2017 May 22; revised 2017 September 1; accepted 2017 September 1; published 2017 October 20

Abstract

The squashing factor (or squashing degree) of a vector field is a quantitative measure of the deformation of the field
line mapping between two surfaces. In the context of solar magnetic fields, it is often used to identify gradients in
the mapping of elementary magnetic flux tubes between various flux domains. Regions where these gradients in the
mapping are large are referred to as quasi-separatrix layers (QSLs), and are a continuous extension of separators
and separatrix surfaces. These QSLs are observed to be potential sites for the formation of strong electric currents,
and are therefore important for the study of magnetic reconnection in three dimensions. Since the squashing factor,
Q, is defined in terms of the Jacobian of the field line mapping, it is most often calculated by first determining the
mapping between two surfaces (or some approximation of it) and then numerically differentiating. Tassev &
Savcheva have introduced an alternative method, in which they parameterize the change in separation between
adjacent field lines, and then integrate along individual field lines to get an estimate of the Jacobian without the
need to numerically differentiate the mapping itself. But while their method offers certain computational
advantages, it is formulated on a perturbative description of the field line trajectory, and the accuracy of this
method is not entirely clear. Here we show, through an alternative derivation, that this integral formulation is, in
principle, exact. We then demonstrate the result in the case of a linear, 3D magnetic null, which allows for an exact
analytical description and direct comparison to numerical estimates.
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1. Introduction

Magnetic reconnection, which is thought to be the primary
mechanism for the release of magnetic free energy in the solar
corona, is a process by which magnetic field lines change their
connectivity, in violation of the frozen-in condition. In two-
dimensional (2D) reconnection, this process is restricted to
occur only at magnetic nulls, and so the study of magnetic
reconnection has naturally been connected to magnetic
topology, with topological features such as nulls, spines, and
separatrix surfaces playing key roles. For a review, see
Longcope (2005). It has been observed, however, that in
three-dimensional (3D) reconnection, it is possible for field
lines to change their connectivity continuously within non-ideal
regions that may or may not contain nulls (Hesse & Schindler
1988; Schindler et al. 1988) and it is, therefore, not entirely
clear what the role of magnetic topology is in this context.
What is clear is that reconnection requires a parallel electric
field and that, given a finite electrical resistivity, electrical
currents must mediate the process.

Despite the fact that reconnection can occur in regions where
the magnetic field does not vanish (Priest et al. 2003; Pontin
et al. 2005), the volumes around topological features in the
magnetic field appear to be preferential sites for current
accumulation. This has led to the identification of so-called
quasi-separatrix layers (QSLs), which are magnetic flux tubes
for which the gradients of the field line mapping exhibit large
(even singular) values (Priest & Démoulin 1995; Démoulin
et al. 1996, 1997; Titov 1999). Because QSLs are themselves
magnetic flux tubes, they can be described locally. And yet, the
property that defines a QSL is a global metric, which depends

on the choice of boundaries as well as integrated properties of
the field. It is therefore possible to have an entire class of field
line configurations with the same mapping,1 which makes it
difficult to form a direct connection between QSLs and specific
sites of current accumulation.
To better understand the connection between QSLs and

reconnection, such authors as Titov et al. (2003), Démoulin
(2006), and Aulanier et al. (2005) have studied current
formation in the case of a hyperbolic flux tube (HFT), with
further efforts being made by Wilmot-Smith et al. (2009) in the
case of braided fields and Janvier et al. (2013) in the case of a
torus-unstable flux rope. Other investigations into QSLs and
their role in magnetic reconnection include scaling laws for
singular current layers (Craig & Effenberger 2014; Effenberger
& Craig 2016), as well as laboratory plasma experiments
(Gekelman et al. 2012; Lorenzini et al. 2016) and even
consideration of magnetospheric plasmas, both computational
(Restante et al. 2013) and observational (Wendel &
Adrian 2013). In every case, two things are clear. First, there
is not a one-to-one correspondence between QSL structures and
current accumulation. This is fundamentally related to the
nature of the field line mapping, which is a non-local property
of the magnetic field. And, second, despite the non-locality of
the mapping, QSLs continue to provide insights into regions
where currents are likely to develop, and where, should
reconnection occur, the overall structure of the field is likely to
be dramatically changed.
The typical metric for studying the field line mapping is the

Squashing Factor (Titov et al. 2002; Titov 2007), which is a
geometrical measure that, nonetheless, reproduces topological
structures in the limit of a discontinuous mapping, and the
identification of QSLs is predicated on our ability to accurately
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1 Any ideal evolution of the magnetic field with line-tied boundaries will
preserve the field line mapping.
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calculate the squashing factor, given an arbitrary magnetic field
and a well defined boundary. But while the definition of Q can
be stated fairly unambiguously, the magnetic field itself is often
sampled discretely, and even where an analytical field is used it
is usually not possible to describe the mapping analytically, so
implementation of the definition depends on how the mapping
is constructed and subsequent approximations to its derivatives.
In practice, this usually means choosing a representative
sample of field lines that are, in some sense, close to each other,
and then determining where (and whether) they intersect the
surfaces on which the mapping is to be described. These
locations are then used to construct a finite difference
approximation of the Jacobian of the mapping, which then
leads directly to an estimate of Q.

This method is relatively straightforward in principle; however,
the quantitative result can vary significantly with only slight
variations in its implementation, and it is not always clear whether
the calculated value is representative of the underlying structure of
the field, or some artifact of the implementation. This is
particularly the case when calculating Q for an intermediate point
along a field line, and it was this concern that led Pariat &
Démoulin (2012) to perform a survey of different implementations
of the technique, in which they reviewed the adverse effects that
arise from various seemingly benign assumptions before finally
offering a “best practices”method, therein called “method 3.” The
idea behind this method is to represent the field line mapping as a
composition of two separate mappings, each from a boundary
surface to a shared, intermediate surface. The full Jacobian is then
constructed algebraically from its constituent parts, and due to the
symmetry of the method, it does seem to be an improvement over
earlier procedures.

Given a particular method for calculating Q, it remains a
computationally nontrivial task to choose field lines in the vicinity
of each point of interest, trace each of these to its end points, and
then numerically construct the local value of Q, a procedure that
must be repeated for each point at which Q is to be calculated. In
an attempt to alleviate this computationally intensive task, Tassev
& Savcheva (2017) developed an alternate method, which is
based on the construction in Pariat & Démoulin (2012), but differs
in its approach to calculating the Jacobian elements, employing a
transport technique similar to that of Longcope & Strauss (1994).
This reduces the computational load by 40% from the Pariat
method—where the latter must independently trace five 3D field
line trajectories, for a total of 15 scalar elements, the former only
traces one field line, plus a pair of additional tangent vectors for a
total of nine scalar elements. Furthermore, Tassev & Savcheva
(2017) claim that their method allows for significant relaxation of
the precision requirements for field line integration, leading to
further reduction in computing time.

Yet, while the method of Tassev & Savcheva (2017) is
computationally efficient, its formulation is based on a perturba-
tive representation of the magnetic field, so it is not entirely clear
what we should expect from this method in terms of accuracy. On
the one hand, because the field line mapping is never stated
explicitly, their method avoids the certain complications that can
arise in situations where adjacent field lines are traced to different
boundary surfaces. And, as has been demonstrated through their
benchmarking of the QSL Squasher software (Tassev &
Savcheva 2017), the perturbative approximation seems to agree
very closely with similar benchmarks from, e.g., Pariat &
Démoulin (2012). However, it remains to be seen whether this
approximation will remain valid in the vicinity of, e.g., a magnetic

null, where the field lines are known to have self-similar solutions
that span multiple scales, and where the field line mapping
exhibits a discontinuity.
The aim of this study is to place the method of Tassev &

Savcheva (2017) on a firm theoretical footing and to extend the
applicability of the method. The organization of this paper is as
follows. In Section 2, we develop a formalism for extracting
information about the Jacobian from the behavior of local
coordinate tangents, which are transported along the field. This
leads directly to a procedure (which we summarize in
Section 2.4) for calculating the squashing factor, Q, for
arbitrary points within a computational domain, through the
identification of each point with a field line and its associated
mapping. Then, in Section 3, we consider the familiar example
of a linear, 3D magnetic null, for which Q can be calculated
analytically using the Lie transport of tangents, and we show
that the result is identical to the result obtained by Pontin et al.
(2016) through explicit differentiation of the mapping. We then
go on to compare these results to numerical estimates obtained
by QSL Squasher, before concluding in Section 4.

2. Transport Formulation

Because the notion of a field line is fundamental to the
discussion of the squashing degree, we begin by examining
field lines and their mappings. In particular, we consider certain
properties of the Jacobian of the mapping and how these can be
written in terms of elements of the tangent spaces of the
mapped surfaces, without explicit reference to the mapping
itself. We then describe how the mapping can be understood in
terms of flows of coordinate trajectories, and how the basis
vectors associated with these coordinate flows are transported
along field lines. And since the coordinate flows are,
themselves, tangent to the mapped surfaces, we may then
associate the transport of these basis vectors along field lines
with the transformation of elements of the tangent space under
the field line mapping, and it is this association that is the
underpinning of the method of Tassev & Savcheva (2017).
Consider a Cartesian coordinate system with a position

vector, x x y z, ,= ( ), and a generic vector field,2

B x x x xB B B, ,x y z=( ) ( ( ) ( ) ( )). We shall denote a field line of
B that passes through the point p as a smooth curve, X ps;B( ),
satisfying

X p B X ps s s; ; 1B B¶ ¶ =( ) ( ) ( ( )) ( )

and

p X ps 0; , 2B= =( ) ( )

where s is a parameterized position along the curve, and is
associated with the directional derivative (of a generic function, h)
along B through

X p B xs h s h; . 3B
x X ps;B¶ ¶ = =( ) ( ( )) ( · ) ( )∣ ( )( )

We refer to the collection of all such curves as the flow of B,
which we denote simply as X sB( ).
Since Equation (2) is an initial condition, we are free to set s

to be zero at any point we choose; however, once the choice is
made, the value of s at every other point along the same field
line is then determined by Equation (1). Therefore, given a
smooth, simply connected surface transversal to B, which we

2 For application to solar physics, we can envision a divergence-free magnetic
field, but this procedure will generally be applicable to arbitrary fields.
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call S0, we may freely assign the value s=0 to every point
within this surface. Then, provided that the domain of interest
is sufficiently small so that field lines emanating from the
surface S0 do not return to it, we can define a mapping

p X p

S S

s s

:

; ; 4B
s s0f ´ ⟶

( ) ⟼ ( ) ( )

which will be invertible, so that

x x
s S

s S
. ; :

; . 5
0

3

0

 ( ) ⟶
⟼ ( ) ( )

That is, for every point x in the domain, there is an associated
value xs( ) and a point of origin p S0Î so that
x X ps S;B

0= Î( ).

2.1. The Jacobian

If the flow of B is smooth, then it sweeps out a volume
extending from the surface S0, and this volume is foliated by
isosurfaces of the monotonically increasing (differentiable)
parameter xs( ), and each of these isosurfaces, which we refer to
collectively as the surfaces Ss, will be diffeomorphic to S0. Let
us consider the mapping from S0 to a particular value of

xs sf=( ) , which defines the “forward” surface Sf , and the
“forward” mapping

p X p

S S

s

:

; . 6B

f f0

f

f ⟶

⟼ ( ) ( )

Denoting the location of a given field line by local coordinates
y i and Y j in the S0 and Sf surfaces, respectively, the dependence
Y yj i( ) is given explicitly by ff , whose Jacobian is then given in
index notation by

Y

y
. 7ij

i

jf =
¶
¶

( )

From the Jacobian, we can then form the Jacobian norm, which
is related to the trace of the symmetrized Jacobian as

N Tr , 8
ij

ij2
f f

2
f
T

f   å= =( ) ( ) ( ) ( )

which then leads to the squashing factor, as given by Titov
et al. (2002),

Q N , 92  =( ) ( ) ∣ ∣ ( )

where ∣ ∣ is the determinant of the Jacobian.
While traditional methods for calculating Q rely on

numerical estimates of the various terms in Equation (7), we
wish to characterize the Jacobian without explicitly solving for
the dependence in Equation (6), and we can do this by
inspection of the push-forward, which relates vectors in the
tangent spaces of Sf and S0. Consider two vector fields, U0 and
V0, that define a locally orthonormal coordinate basis3 on S0.
Because U0 and V0 are elements of the tangent space of S0, they
can be associated with corresponding elements of the tangent
space of Sf , and their transformation properties are then
governed by the mapping ff , so that

U U V V, , 10f f 0 f f 0 = = ( )

as seen in Figure 1.
If we take the local coordinates in S0 and Sf to be Euclidean,

we can compute the length of these vectors in the usual way, and
this will reveal information about the deformation of the
mapping. In matrix notation, the inner product ofUf with itself is

U U U U

U U , 11
f f f 0

T
f 0

0
T

f
T

f 0

 
 

=

=

· ( ) ( )
( ) ( )

or, equivalently,

U U , 12f f f
T

f 0,0 =· ( ) ( )[ ]

where we have identifiedU U0
T

0 as the 0, 0[ ] element of a matrix
, in a coordinate system in which U0 is the first basis vector.
Similarly, taking V0 to be another basis vector in S0, we find that

V V , 13f f f
T

f 1,1 =· ( ) ( )[ ]

while the symmetric, off-diagonal elements are

V U . 14f f f
T

f 1,0 f
T

f 0,1   = =· ( ) ( ) ( )[ ] [ ]

From these relations, we can then construct the Jacobian
norm, and from that Q, but before we do that let us consider the
more general case, which consists of a composition of
mappings,4 one from S0 to Sf , denoted ff , and another from
S0 to a “backward” surface Sb, denoted bf . We shall assume
that each is invertible, and that their composition is a mapping
from Sb to Sf , given by the transition map

S S: . 15bf f b
1

b ff f fº -◦ ⟶ ( )

The Jacobian of this transition map is then the matrix product
of the Jacobian of each of the mappings,

. 16bf f b
1  = - ( )

With these definitions, and a bit of algebra, the Norm of the
Jacobian for the composite mapping takes the form

N Tr

Tr , 17

2
bf bf

T
bf

b
1T

f
T

f b
1

  
   

=
= - -

( ) ( )
( ) ( )

which, by the properties of the trace, is then

N Tr

Tr . 18T

2
bf f

T
f b

1
b

1T

f
T

f b b
1

    
   

=
=

- -

-

( ) ( )
(( ) ( ) ) ( )

We can then make use of the fact that

U U U V
V U V V

, 19f
T

f
f f f f

f f f f
  =

⎛
⎝⎜

⎞
⎠⎟( ) · ·

· · ( )

while the inverse of the symmetrized backward Jacobian is

V V U V
V U U U

. 20b
T

b
1 b b b b

b b b b
b

2  =
-

-
- ⎛

⎝⎜
⎞
⎠⎟( ) · ·

· · ∣ ∣ ( )

Combining Equations (18)–(20), we then find that

U V U V U V U V
N

2
, 212

bf
f
2

b
2

b
2

f
2

f f b b

b
2




=
+ -( ) ( · )( · )

∣ ∣
( )

3 In principle, these could be any vectors in the tangent space of S0, but we
will later find it useful to invoke orthonormality.

4 From this construction, it is possible to recover the case of a single mapping
by setting either the forward or backward mapping to be the identity.
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and, from this expression, we can then construct the complete
squashing factor for the mapping from Sb to Sf as

U V U V U V U V
Q

B B B

2
, 22n n nbf

f
2

b
2

b
2

f
2

f f b b

0
2

b f

 =
+ -( ) ( · )( · )

( ) ( )
( )

where we have identified the determinant of each Jacobian as
the ratio of the normal components of the magnetic field in S0,
Sb, and Sf ,

5 i.e.,

B n
B n

B B 23n n
bf

b b

f f
b f = =∣ ∣ ∣ · ∣

∣ · ∣
( )/

and

B n
B n

B B . 24n n
b

0 0

b b
0 b = =∣ ∣ ∣ · ∣

∣ · ∣
( )

This expression for the squashing factor in terms of vectors
that are transformed under the field line mapping is exactly the
expression that appears in Equation(11) of Tassev & Savcheva
(2017), after associating the basis vectors U and V with their
“field line displacement” vectors a and b. However, where their
expression was derived from consideration of the covariance of
Q and explicit inspection of the Jacobian elements given in
Pariat & Démoulin (2012), using the local coordinate system in
Sb and Sf , this formulation makes no explicit reference to any
particular coordinate system. And while their description was
particular to displacements perpendicular to the field, our
formulation places no requirement on the orientation of the

surfaces S0 and Sf with respect to B, and can therefore be
applied to mappings of arbitrary orientation.

2.2. Transport of Tangents

Given that the squashing factor can be constructed from the
transformation properties of vectors in the tangent spaces of S0,
Sf , and Sb, it remains to determine these transformation
properties explicitly. In the previous section, we considered
the vectors U0 and V0, which form a locally orthonormal
coordinate system in S0. We shall now consider the flows
generated by these vectors, which we call X p;U0 m( ) and
X p;V0 n( ). Then, because U0 and V0 span a coordinate system,
their flows necessarily commute, i.e.,

X X p X X p; ; ; ; . 25U V V U0 0 0 0m n n m=( ( )) ( ( )) ( )

For convenience, we will refer to the composition of these
flows as X p, ;U V0 0 m n( )◦ , with the flow parameters ,m n{ } now
serving as a coordinate pair in S0.
We can generalize the definition of U0 and V0 (which exist

only in S0) to a pair of vector fields, U and V , defined
continuously along the flow of B, so that U x US0 0Î =( ) , and
similarly with V . This is done by requiring that

X X p X X ps s; ; ; ; 26B U U Bm m=( ( )) ( ( )) ( )

and

X X p X X ps s; ; ; ; . 27B V V Bn n=( ( )) ( ( )) ( )

Equations (26) and (27), together with the commutation of
flows of U and V in S0, and the Jacobi identity, guarantee all
three flows commute, so that the composition of these flows,

Figure 1. Under the mapping ff , elements of the tangents space of S0 are related to elements of the tangent space of Sf through the Jacobian of the mapping, i.e.,
U Uf f 0= , and similarly with Vf .

5 Alternatively, one can write V Ub b b = ´∣ ∣ ∣ ∣, and similarly for f∣ ∣, a result
obtained from consideration of the transformation properties of the area two-
form associate with U V´ , which shows that the elements of the transformed
tangent space encode all of the information necessary for calculating Nbf

2 , and
therefore Q.

4
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which we denote

X p X X p

X X p

X X p

s s

s

s

, , ; : ; , ;

; , ;

; , ; , 28

U V B B U V

U V B

V U B

m n m n
m n
n m

=
=
=

( ) ( ( ))
( ( ))
( ( )) ( )

◦ ◦ ◦

◦

◦

is independent of the ordering of U, V , and B, as demonstrated
in Figure 2. These properties imply that the Lie bracket for the
various pairings of U , V , and B must all vanish, so that

B U B B U 0, 29U  = - =( · ) ( · ) ( )

B V B B V 0, 30V  = - =( · ) ( · ) ( )

and

V U V V U 0. 31U  = - =( · ) ( · ) ( )

The foregoing conditions simultaneously guarantee that
,m n{ } are a viable coordinate pair in any isosurface of s, and

that their value is preserved along any field line of B so that, in
fact, the triplet of values s, ,m n{ } is a viable coordinate system
for the entire volume swept out by the flows of U, V , and B.
And from these conditions, we can develop a prescription for
constructing U and V throughout the domain, by taking as
initial conditions the values of U0 and V0, given at a point
p S0 0Î , and then integrating along the flow of B, with

U X p U Bs s; , 32B
x X ps0 ;B

0
¶ ¶ = =( ) ( ( )) ( · ) ∣ ( )( )

V X p V Bs s; . 33B
x X ps0 ;B

0
¶ ¶ = =( ) ( ( )) ( · ) ∣ ( )( )

And, just as we did with the field line parameter s, we can map
values of m and ν onto the entire domain, of which values are
preserved along flows of each other’s basis vectors so that

U U s 0, 34n = =· · ( )

V V s 0, 35m = =· · ( )

and

B B 0. 36m n = =· · ( )

Thus, it follows that for any isosurface of s, given by Ss, U and
V will locally be elements of the tangent space of Ss, and must
transform accordingly.
This connection makes exact the transport condition

described in Tassev & Savcheva (2017) and the connection
between the transport of tangents and the construction of Q in
terms of said tangents. Namely, sinceU andV are basis vectors
for a coordinate system whose flows commute with the field
line parameterization, they must evolve according to the
transport equation along a given field line. And since they
are also elements of the tangent space for isosurfaces of the
field line parameter, they must transform according to the
Jacobian of the field line mapping. The Jacobian is, therefore,
fundamentally related to the transport equation, and its various
properties can be understood by inspection of the transport of
tangents along field lines.

2.3. Rotation of the Tangent Plane

So far we have shown how the coordinate unit vectors U and
V transform between surfaces S0 and Sf , and how their
transformation properties relate both to the Jacobian Norm, and
the continuous transport of tangents along field lines of B. For
these results to be applicable to mappings between arbitrary
surfaces of interest, we must be able to specify the orientation
of the tangent plane at the point pf (or pb in the case of the
backward mapping) so as to be consistent with the orientation
of the surface that is being mapped. However, because the
surface Sf is necessarily an isosurface of s, its surface normal is

Figure 2. Commutation of the flows generated by U , V , and B ensures that points in S0 and Sf that lie along a common field line will share a common value of the
coordinate tuple, ,m n{ }, a condition that is guaranteed if B U U B =( · ) ( · ) , and similarly with V .

5
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defined by xs ( ). We must therefore consider alternate
parameterizations of the flows of B, which will allow for
arbitrary orientation of the tangent plane, and whose elements
will be related through a simple transformation rule.

Due to the linearity of Equations (1) and (3), the choice of
parameterization for the field lines of B is arbitrary, up to a
smooth, non-zero scalar field. That is, if we consider the field
lines of B x x B xl=˜ ( ) ( ) ( ), these are given by

X p B X pt t t; ; , 37B B¶ ¶ =( ) ( ) ˜ ( ( )) ( )˜ ˜

which are identical to field lines of B, but for the (now more
general) field line parameter t, which is given implicitly as

X ps t s; . 38x X p
B

s;B l¶ ¶ ==( )∣ ( ( )) ( )( )

Then, since t(s) increases monotonically with s along X ps;B( ),
the flows of B and B̃ are related by a simple substitution rule,

X p X pt s t; ; , 39B B=( ) ( ( ) ) ( )˜

which we can use to generalize the results of the previous section.
Because t(s) depends on the spatial variation of xl ( ),

isosurfaces of t will themselves depend on xl ( ), and will
generally be transversal to isosurfaces of s. And since the field
lines are independent of the parameterization, the mappings
generated by flows of B̃ are no less valid as descriptors of the
magnetic field than those generated by B. Therefore, if we wish
to characterize the mapping to a surface with an arbitrary
orientation, nf˜ , at the point pf , it suffices to consider the
parameterization given by a particular choice of xl ( ) such that,
at the point pf , the prescribed surface normal, nf˜ , is parallel to

t . This will ensure that the point pf is an element of an
isosurface of t, called Sf̃ , whose tangent plane is orthogonal to
nf˜ at pf . But how are we to choose xl ( ) without prior
knowledge of t ? As it happens, we do not need to; it is
enough to know that such a choice could be made, and
transformation properties under the mapping defined by flows
of B̃ can be recovered from the mapping defined by flows of B.

Consider the generalized coordinate vectors Ũ and Ṽ , which
will be equal to U and V in S0, and will commute with B̃. Since
the flows of B̃ are tangent to the flows of B, which are themselves
perpendicular to contours of μ and ν, we find that the coordinates

,m n{ } are unaffected by the new parameterization,6 so that

U X p U X p; ; , 40U Um m =( ˜ · ) ( ) ˜ ( ( )) ( )˜ ˜

V X p V X p; ; , 41V Vn n =( ˜ · ) ( ) ˜ ( ( )) ( )˜ ˜

just as before.
We wish to evaluate Ũ explicitly at the point pf , which will

lie at the intersection of the isosurfaces Sf and Sf̃ , each being
defined by the values ps s f= ( ) and pt t f= ( ), with

p X p X pt s; ; . 42B B
f f 0 f 0= =( ) ( ) ( )˜

Now, except in the trivial case of 1l = , the flows of B̃ do not
commute with those of U and V in general. However, in S0,
where t s s 0= =( ) , the flows of U and V are identical to the
flows of Ũ and Ṽ , so

X p X X pt t, , ; , , ; . 43B U V B U Vm n m n=( ) ( ( ( ))) ( )˜ ◦ ˜ ◦ ˜ ˜ ◦

Then, using the substitution in Equation (39), we find that,
within Sf̃ , the point

X p X pt s t, , ; , , , , ; , 44B U V B U V
f 0 f 0m n m n m n=( ) ( ( ) ) ( )˜ ◦ ˜ ◦ ˜ ◦ ◦

where s t , ,f m n( ) varies continuously within Sf̃ according to the
spacial variation of xl ( ). Then, substituting Equation (44) into
Equation (40), we have

U p U X p

X X p

X X p

U B

s t

s t

s

s
s

s

, , , , ;

; , , , ;

; , ;

, 45

B U V
x p

U B V
x p

X

B U V
x p

X

f 0

f 0

0

f f

U

U

f

f

f

m n m n

m
m m n n

m
m n

m

=

=
¶
¶

+
¶
¶

¶
¶

= +
¶
¶

=

=

=

˜ ( ) ( ˜ · ) ( ( ) )∣

( ( ( ) ))∣

( ( ))∣

( )

◦ ◦

◦

◦
˜

˜

where we have used the short-hand U U pf f≔ ( ), and similarly
with B, and defined

X p
s

s ; . 46
X

U
f

Um
m m

¶
¶

¶ ¶≔ ( ) ( ( )) ( )˜

˜

The derivative in Equation (46) is nontrivial to evaluate as it
depends on the spatial variation of xl ( ), which is left general.
Fortunately, we do not need to evaluate it directly; it is enough
to know that it enters Equation (45) only as a coefficient for a
term parallel to B, indicating that the component of Ũ that lies
perpendicular to B is independent of xl ( ). Therefore, for every
choice of xl ( ) (and therefore every choice of nf˜ ), we can
describe Uf˜ and, by extension, Vf̃ , as

U U B, 47Uf f= + G^˜ ˜ ( )
V V B, 48Vf f= + G^˜ ˜ ( )

with Uf^ and Vf^ being independent of xl ( ), while UG̃ and VG̃
are given such that Uf˜ and Vf̃ are elements of the tangent space
of Sf̃ , i.e.,

n U n V 0. 49f f f f= =˜ · ˜ ˜ · ˜ ( )

In practice, we can forego the explicit extraction of the
perpendicular component, and transform directly between
tangents for various parameterizations (see Figure 3) by

Figure 3. Vectors U , and Ũ share the same component perpendicular to B,
given by Û . Since U lies in an isosurface of s, while Ũ lies in S̃ , which is an
isosurface of some other parameterization, the latter can be constructed from
the former through the addition of a component that is purely parallel to B.

6 It is enough to specifiy μ and ν in S0 and then orthogonality with B specifies
their value everywhere.
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substitution of the above definitions into each, from which we
see that if, for example, we calculate Uf and Vf by direct
integration, we can then construct

U U
U n
B n

B , 50f f
f f

f f
f= -˜ · ˜

· ˜
( )

V V
V n
B n

B , 51f f
f f

f f
f= -˜ · ˜

· ˜
( )

which guarantees that U Uf f=^ ^˜ , while also satisfying
Equation (49). And, by this construction, the mapped surface,
Sf̃ , is guaranteed to be transversal to B, since no finite value of

UG̃ could make Uf˜ parallel to B unless U B 00 0´ = , which is
prohibited by our initial choice of U0.

2.4. Summary and Application

In the foregoing analysis, we have developed a formalism for
initiating a pair of coordinate tangent vectors, evolving them
along field lines, forming the projection of these tangents onto
surfaces of arbitrary orientation, and then constructing the
squashing factor for the mapping between those surfaces. We
now include a short summary of these results in the form of an
explicit procedure for calculating Q.

1. Choose a point, p0, at which Q is to be evaluated, and
initialize a pair of orthonormal unit vectors (here called
U0 and V0). These may be chosen to be orthogonal to B;
however, the requirement is only that they not be parallel
to B.

2. Trace a field line of B, forward and backward from p0 to
its end points at pf and pb, and simultaneously integrate
Equations (32) and (33) for U and V , taking U0 and V0 as
initial conditions and using whatever parameterization is
convenient.

3. At the points pf and pb, choose local surface normals nf˜
and nb˜ , which define the local tangent space for the
mapping to be considered. These may be taken to
coincide with the criteria for the field line end points, e.g.,
the normal to the boundary, or the magnetic field
direction, or any other local mapping surface of interest.

4. Reproject the integrated values of U and V at pf and pb
using Equations (50) and (51) to recover Ũ and Ṽ , which
are elements of the tangent space for the mapping into the
prescribed surfaces, noting that the components of Ũ and
Ṽ that lie perpendicular to B are the same as those of U
and V .

5. Form the determinant and Norm of the Jacobian from the
projected tangents (Ũ and Ṽ ), or from locally sampled
values of B in the case of the determinant, and then
algebraically construct Q for field lines in the neighbor-
hood of p0, using Equation (22).

3. 3D Null—An Example

In order to demonstrate the method that we have described,
we now calculate the squashing factor for a linear null, and we
compare our result with the exact expression derived by Pontin
et al. (2016). We first align our coordinate system to the
eigenvectors of the magnetic field Jacobian at the location of
the null, and define the (nondimensional) magnetic field to be

B xk kx k y z, 1 , , 52= = - -· ( ( ) ) ( )

where the coefficient matrix is

k
k

k
0 0

0 1 0
0 0 1

. 53= -
-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

The field lines of B originate and terminate in the z=a and
x=b surfaces, respectively, and we take these to be the
boundaries of our domain. In order to avoid ambiguity,
we employ local coordinates ,c j( ), corresponding to x y,( ) in
the z=a coordinate plane. This field configuration will be the
same for both the analytical derivation as well as the numerical
estimate that follows.

3.1. Exact Solution

For consistency with Pontin et al. (2016), we now consider
the case where the mapped surfaces, Sf̃ and Sb˜ , are tangent to
the boundaries of the domain (x= b and z= a) with surface
normals n xf =˜ ˆ and n zb = -˜ ˆ, respectively. With this conven-
tion for the orientation of the mapped surfaces, the associated
squashing factor is referred to as Q∂. Since we are interested in
Q¶ within the z=a plane, which is cospatial with the
“backward” surface (Sb˜ ), one of the composite mappings is
the identity and this simplifies the calculation somewhat;
however, as the general construction allows for such cases, no
modifications to the described method are required.
We begin with the field line equation for the flows of B,

which can be solved analytically to give

X s X e 54ks
0=( ) ( )

Y s Y e 55k s
0

1= -( ) ( )( )

Z s Z e , 56s
0= -( ) ( )

where X(s), Y(s), and Z(s) are the Cartesian components of
X ps;B( ), while X ps X Y Z0; , ,B

0 0 0= =( ) ( ). Identifying the
z=a plane with s=0, we now employ local coordinates
X Y Z a, , , ,0 0 0 c j=( ) ( ). We can then solve Equation (54) for s
in the x=b plane, which we write as

s
k

b1
ln , 57f

c
=

⎛
⎝⎜

⎞
⎠⎟ ( )

and, therefore,

X s b, 58f =( ) ( )

Y s
b

, 59
k k

f

1

j
c

=
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( )

and

Z s a
b

, 60
k

f

1c
= ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

while the magnetic field at the point X ps ;B
f( ) is given by

B k b k
b

a
b

, 1 , . 61
k k k

f

1 1

j
c c

= - -
-

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( )

( )

Note that the value of sf depends explicitly on χ/b, and
therefore changes within the x=b surface, which is, itself, not
an isosurface of s. Therefore, any vector that is an element of
the tangent space of s at z=a will not be mapped directly into
the x=b surface, but will need to be transformed as described
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in Section 2.3 before it can be used to characterize the mapping
between z=a and x=b.

We now select an orthonormal pair of tangent vectors in the
z=a plane, which we will integrate along field lines of B. In
the general case, we would use the magnetic field to choose a
preferred direction, and then construct these tangents to span a
plane locally perpendicular to B, so that B U V 10 0 0´ =∣ ˆ · ( )∣ .
This is a perfectly valid approach, and we have carried out the
calculation (which is quite lengthy) and confirmed that it
produces the desired result. However, in the case of the linear
null, it is convenient to choose our tangents to be initially
parallel to the z=a plane, which is also the backward mapping
surface. Then, since the backward mapping is just the identity,
U0 and V0 are automatically equal to Ub˜ and Vb˜ .

To proceed with the calculation, let

U x , 620 = ˆ ( )

V y . 630 = ˆ ( )

The transport equations for U and V are simplified greatly by
the linearity of B, so that Equations (32) and (33) become

s U U k , 64i j
ij¶ ¶ =( ) ( )

s V V k , 65i j
ij¶ ¶ =( ) ( )

where Ui and V i are the Cartesian components of U and V ,
parameterized along X ps;B( ), and kij is the matrix of
coefficients of B, from Equation (53). Since kij is diagonal,
the components of U and V evolve in exactly the same way as
the components of the field lines themselves, with

U s U e , 66x x ks
0=( ) ( )

U s U e , 67y y k s
0

1= -( ) ( )( )

U s U e , 68z z s
0= -( ) ( )

and similarly for V . From this, we find that, at s sf= ,

U x
b

, 69f
c

= ˆ ( )

V y
b

. 70
k k

f

1

c
=

-⎛
⎝⎜

⎞
⎠⎟ˆ ( )

( )

As expected, the vectorsUf andVf are tangent to the isosurfaces
of s (which are, in this case, isosurfaces of z). In order to construct
the mapping in the boundary surface, we must transform the
coordinate tangents so that they will be parallel to the x=b plane,
as shown in Figure 4. We do this by appealing to Equations (50)
and (51), with nf˜ taken to be x̂, which then gives

U U
x U
x B

B 71f f
f

f
f= -˜ ˆ ·

ˆ ·
( )

and

V V , 72f f=˜ ( )

since V x 0f =· ˆ . In order to recover the elements of the
symmetrized Jacobian, we will need Uf

2˜ , Vf
2˜ , and U Vf f˜ · ˜ .

Starting with the diagonal elements, we have

V
b

, 73
k k

f
2

2 1c
=

-
⎜ ⎟⎛
⎝

⎞
⎠˜ ( )

( )

and

U
x U
x B

B B U U

k

k b

a

k b

1
, 74

k k k

f
2 f

f

2

f f f f

2 2 1 2 2j
c

c
c

c

= -

=
-

+
-

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

˜ ˆ ·
ˆ ·

· ·

( ) ( )
( )

where we have exploited the fact that Uf is parallel to x̂ to
simplify the calculation. The off-diagonal elements are given
by the cross-term

U V V U
x U
x B

B

k

k b

1
. 75

k k

f f f f
f

f
f

2 1j
c

c

= -

=
- -

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

˜ · ˜ · ˆ ·
ˆ ·

( ) ( )
( )

We will also need these quantities in the backward mapping
surface. But, of course, the backward mapping is just the
identity, and the S0 surface is the same as the Sb surface, so
V V Vb b 0= =˜ , U U Ub b 0= =˜ , and B B an z

b 0= = -˜ , while
B B k bn x

f f= =˜ . The associated squashing factor, as given in
Equation (22), is then

U V U V U V U V

U V

Q
B B B

B B

2

, 76

n n n

z x

f
2

b
2

b
2

f
2

f f b b

0
2

f b

f
2

f
2

0 f

=
+ -

=
+

¶
˜ ˜ ˜ ˜ ( ˜ · ˜ )( ˜ · ˜ )

( ) ( )
˜ ˜
∣ ∣

( )

(since U V 00 0 =· ) and has the final, simplified form of

Q
k b

a

k

k b

a

k b b

1

. 77

k k

k k k

2 2 1

2 2 2 1

j
c

c

c
c c

=
-

+ +

¶

-

-

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

( )

( )

( )

( )

Figure 4. Tangent vectors U and V are transported along field lines XB. At the
intersection of XB with the boundary of the domain, Uf is not in the tangent
space of the mapped surface, but Uf˜ , which shares a component perpendicular
to B, is in the appropriate tangent space.
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Recalling that c and j are the field line locations in the z=a
plane, we see that this expression is identical to the expression
in Pontin et al. (2016), but has been derived here with no
explicit differentiation of the field line mapping.

3.2. Numerical Estimate

Having validated the transport formulation analytically, we
wished to test the numerical implementation on the same
magnetic field configuration. And, where Tassev & Savcheva
(2017) verified the QSL Squasher code for a sample magnetic
field with large but finite gradients in the field line mapping, we
wished to inspect the numerical result in the vicinity of a genuine
separatrix structure, at which the value of Q diverges. We
therefore used the QSL Squasher code to compute explicitly
the perpendicular squashing factor for the same linear, 3D
magnetic null described in the previous section.

The magnetic field was given as in Equation (52), with
k=0.5, making the null symmetric in x y, . The computational
domain was bounded by x y z1 , , 1- < <( ) , corresponding to
a b 1= = , and although the QSL Squasher utility allows for
the source magnetic field to be sampled on any rectilinear grid,
the linearity of the field in this case negates any advantage that
might be offered by increased resolution, so a coarse grid of
128, 128, 128( ) was used for the source field. We performed
the calculation both for a 3D volume rendering (see Figure 5),
with a grid resolution of 256, 256, 256( ), and for 2D surface
renderings in the z=a and x=b planes, both with grid
resolutions of 512, 512( ). For field line integration, we chose
the default adaptive stepper (see Tassev & Savcheva 2017),
with an error tolerance of 10−4. We also experimented with
Eulerian stepping, and found similar results with a (surprisingly
relaxed) step size of 10−3, but with a significant increase in
computation time. Additionally, QSL Squasher allows for
adaptive mesh refinement; however, in this case, we are
interested in comparing the result as calculated at grid centers,
so this feature was not employed. The results of these

calculations are presented below, with relevant coordinates
normalized to the value of a b=( ).
Since QSL Squasher only calculates the perpendicular

squashing factor, a direct comparison of the numerical results
to Equation (77) is not possible. However, the methods
employed in the derivation of Q¶ also allow for the calculation
of the squashing degree for mappings with local coordinate
tangents that are perpendicular to B (see Appendix for details
of the calculation). For the following, we refer to the
perpendicular squashing degree as Q^, while the numerical
estimate of Q^ from QSL Squasher is referred to as Q*̂. As
in Section 3.1 these will be parameterized by the location of
field lines that originate in the z=a plane (with local
coordinates x y z a, , =( ) given as ,c j( )) and terminate in
the x=b plane (with x b y z, ,=( ) given as (Y,Z)).
In Figure 6, Q¶, Q^, and Q*̂ are plotted for 0j = , with

0 1c< < . Note that while Q¶ exhibits a local minimum
at 2 2c ~ , Q^ has no local minimum, and decreases
monotonically with c. Comparing Q*̂ to Q^, the fidelity is
extremely good all the way down to the sampling resolution of

10 3c ~ - , which confirms the validity of the transport
formulation as a numerical technique, as well as an analytical
description. From inspection, we see that for 0j = and small
c the squashing degree goes as Q 2c~^

- , which is identical
to the limit of Q¶ in Equation (77). This is to be expected
since, for field lines that originate at small values of c, the
magnetic field is nearly orthogonal to the boundaries at x=b
and z=a, so the distinction between Q¶ and Q^ is immaterial
in this limit.
In Figures 7 and 8, the squashing factor is shown for
,c j( ), in the z=a plane, with contours corresponding

to Qlog 0.31, 0.5, 1, 2, 310 = { }. Note that the value 100.31

2.04»( ) is fractionally larger than the theoretical minimum value
ofQ 2 . The left and right sides of Figure 7 indicate Q∂ andQ^,
as given in Equations (77) and (80), again with k=0.5 and
a b 1= = . The local minimum in Q∂ at 2 2c ~ is visible in
the “C” shaped contour that twice intersects the 0j = axis.
Throughout the domain, the values of Q∂ are generally higher than

Figure 5. Perpendicular squashing factor, as calculated using QSL Squasher
and rendered using Paraview, is shown for a 3D liner null. Q*̂ is represented
by the log10 cubehelix color scale (Green 2011). Representative field lines
are shown for the null spine and separatrix fan (purple), as well as self-similar
field lines in the x=y and x y= - diagonal planes (red and blue).

Figure 6. Squashing degree is parameterized by the c coordinate in the z=a
plane, with 0j = , a b 1= = , and k=0.5. The solid blue and dashed red
curves show the analytical result for Q^ and Q¶, respectively, while the circles
show Q*̂, as calculated by the QSL Squasher routine. The dashed magenta
line and square scatter plot show Q Q-^ ¶∣ ∣ and Q Q*-^ ^∣ ∣, respectively.
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those of Q^ at the same locations, owing to the projection effect
when mapping between surfaces that are not perpendicular to B;
however, along the 0j = axis the values of Q∂ and Q^ appear to
converge for small c, as expected.

In Figure 8, we again see Q^ in the right side of the figure,
while the left side now shows Q*̂, calculated with QSL
Squasher. For this calculation, the numerical domain was
bounded by y 1∣ ∣ , so field lines that would otherwise
intersect the x=b boundary at Y 1>∣ ∣ , instead intersect the
y=b boundary. As a result (and because k=0.5 for this
calculation), we see that Q*̂ is symmetric about c j=  .
Despite this, the agreement between Q^ and Q*̂ can be readily
seen by comparing their contours, which are nearly indis-
tinguishable in the region c j> ∣ ∣. Indeed, the only discernible
difference appears to be in the slightly noisier quality of Q*̂,
which is to be expected from a numerical result.

Since both the analytical expression for Q^ and the (Y,Z)
coordinates of a given field line in the x=b plane depend on
the coordinates ,c j( ) in the z=a plane, these can be easily
inverted to give Q Y Z,^( ), which can then be compared to the
calculated value of Q*̂ on the x=b surface. This calculation is
depicted in Figure 9, which shows Q^, Q¶, and Q*̂ as
parameterized by Z with x b Y, 0= = . As expected, the
squashing degree diverges as Z goes to zero, which is
consistent with the existence of a separatrix fan in the z=0
plane. The behavior of Q in this slice is qualitatively similar to
that of Q near the spine, except for a weaker overall
dependence on Z/a compared to χ/b—since Q goes as 2c-

near the spine, and Z 2c~ , we find that Q∼Z−1 near the fan
plane. The same local minimum in Q¶ is in evidence, and the
fidelity of Q*̂ is extremely good.

A 2D representation of Q in the x=b surface is given in
Figure 10, this time comparing only Q^ and Q*̂. Again, we see
excellent agreement between the analytical and numerical
results. The slight upward tilt of the contours as Y∣ ∣ increases is
consistent with the same behavior for increasing j in Figures 7
and 8—field lines at larger values of Y are generally longer and
their cross-sections more distorted than those that intersect the
boundary near Y=0.

4. Conclusion

While the squashing degree (Q) of a vector field is a useful
measure for characterizing certain topological and geometrical
properties of the field, numerical estimates of Q are prone to
systematic uncertainty and limited in resolution due to the
computational intensity of the calculation. The method described
and developed by Tassev & Savcheva (2017) goes some way to
alleviating this through the use of GPU computing and also through
the implementation of a novel formulation for calculating Q in
terms of transported displacement vectors. But while the method
has definite computational advantages, the theoretical validity of its
formulation has not been previously described in detail.
Here we have confirmed the validity of the method of Tassev &

Savcheva (2017) and shown that the squashing factor, Q, can be

Figure 7. Squashing factor is shown in the z=a plane with the null spine at
the point 0c j= = . The left portion of the figure ( 0j < ) corresponds to Q¶,
while Q^ is shown on the right ( 0j > ).

Figure 8. Squashing factor is again shown in the z=a plane with the null
spine at 0c j= = . Again Q^ is shown on the right ( 0j > ), while the left
panel ( 0j < ) now shows Q*̂, as computed by QSL Squasher.

Figure 9. Squashing degree is parameterized by the Z coordinate in the x=b
plane, with Y=0, a b 1= = , and k=0.5. Again, the solid blue and dashed
red curves show the analytical result for Q^ and Q¶, respectively, while the
circles show Q*̂, as calculated by the QSL Squasher routine. The dashed
magenta line and square scatter plot show Q Q-^ ¶∣ ∣ and Q Q*-^ ^∣ ∣,
respectively.

Figure 10. Perpendicular squashing degree is shown in the x=b plane, with
Q^ on the right and Q*̂ on the left. As before, a b 1= = and k=0.5. The
lower boundary, at Z=0, corresponds to the intersection of the separatrix fan
with the x=b surface.
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derived exactly from the transport of coordinate tangents along
field lines. This derivation is based on a differential geometry
approach to the field line mapping, and is independent of any
perturbative representation of the field. Furthermore, we have
shown that the technique can be used for mappings of arbitrary
orientation, and we have demonstrated this explicitly in the case of
a linear null, enclosed in a cubic domain.

We have also shown that the numerical result, obtained by
application of the QSL Squasher code on the same linear null, is
in excellent agreement with the analytical solution. In particular,
since Q is estimated without finite differencing of integrated values,
the precision of Q is directly related to the numerical precision of
the field line integrator, and the code clearly benefits from this
scaling, as evidenced by the high fidelity of the numerical result,
even for field lines that pass extremely close to the null.

We therefore conclude that the method described by Tassev &
Savcheva (2017) is theoretically sound, and should not be
expected to give erroneous results when applied to generic field

configurations, although the numerical accuracy of the integration
scheme must be monitored, as in all cases. Furthermore, we
suggest that future implementations and refinements of this
technique could be developed with the inclusion of user-defined
definitions for the local surface normal of the mapping, as well as
options for specifying the initial configuration for the integrated
tangent vectors, which need not be orthogonal to the magnetic
field, and might offer improvements to numerical accuracy if
selected through some a priori knowledge of the magnetic field.
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discussions on the topic. We also thank the anonymous referee
for their careful reading and valuable insights. Funding for this
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Appendix
Calculation of the Perpendicular Squashing Factor

In a previous section, we qualitatively described the differences between the squashing factor for mappings into surfaces whose
normal is defined by the domain boundaries Q¶( ) and mappings into surfaces whose normal is defined by the direction of the
magnetic field Q^( ). In the case of the linear null, the full expression for Q^ is quite long, and has been previously omitted. We
include it here for completeness.

In order to find Q^, we begin with the same analytical expressions for the field line trajectories as given in Section 3.1, as well as
the coordinate tangents U and V as given in Equations (62), (63), (69), and (70). Here again, the backward mapping is simply the
identity, so U Ub 0= and V Vb 0= . From there, the distinction between Q¶ and Q^ is in the choice of the surface normals, which
we now take to be n B Bf f f=^ ∣ ∣ and n B Bb b b=^ ∣ ∣, so that the normal components of the field are BBf f=^ ∣ ∣ and BBb b=^ ∣ ∣.
The coordinate tangents are then given by

U U
U B
B B

B , 78f f
f f

f f
f= -^

·
·

( )

U U
U B
B B

B , 79b b
b b

b b
b= -^

·
·

( )

and similarly for Vf^ and Vb^. From these expressions, Q^ is constructed in terms of Uf^, Vf^, Ub^, Vb^, Bf^, and Bb^, just as Q¶ was
constructed in terms of Uf˜ , Vf̃ , Ub˜ , Vb˜ , B n

f
˜ , and B n

b
˜ . Through symbolic computation, we then find the perpendicular squashing factor to be

Q b k b k b a b

k b k b b a b

k a k b k b k k b

b k k a a k b

k k k b

a b k a b

a k a b k a b k

1

1

1 1 1

2 1 1

1 1

1

. 80

k k

k k

k k

k

k

k

2 1 2 2 2 2 2 2 2 2 1 2

2 2 2 4 2 4 2 2 2 3 2

2 2 2 2 2 4 6 4 2 6 2 2 2 4

2 2 2 2 2 2 2 2 2 2 2

2 4 2 2 2 2 2 6

2 4 2 2 2 2

2 2 2 2 4 6 4 2 2 6 2

c j c
c j c c

j j c c j c
c j c j c

j c c j c
c c

j c c

= - + +
´ - + +

´

- + - + + -
+ - + + -

+ + - -
+ +

+ - + + +

^
+ -

-

-

-
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This lengthy expression can be simplified by considering the behavior along the x axis ( 0j = ) for which we see that

Q
k b b a k b a b

k a k b a b
0 , 81

k k k k

k

2 2 2 1 2 2 2 2 1 2 2

2 2 2 2 2 2 2
j

c c c c

c c
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+ + +

+ +
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( ) ( ) ( )( ) ( )

( )
( )

( ) ( )

which has exactly the same limiting form as Q∂ for small χ/b, namely,

Q b
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a b
0, . 82
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