148 research outputs found

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Japanese haemodialysis anaemia management practices and outcomes (1999–2006): results from the DOPPS

    Get PDF
    Background. Japanese haemodialysis (HD) patients not only have a very low mortality and hospitalization risk but also low haemoglobin (Hb) levels. Internationally, anaemia is associated with mortality, hospitalization and health-related quality of life (QoL) measures of HD patients

    A Blood-Based Screening Tool for Alzheimer's Disease That Spans Serum and Plasma: Findings from TARC and ADNI

    Get PDF
    There is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer's disease (AD) at the population level.To generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum and plasma. status) data.Alzheimer's disease.11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set) (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/Aβ ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the likelihood ratio of not having AD based on the algorithm (LR−) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47).It is possible to create a blood-based screening algorithm that works across both serum and plasma that provides a comparable screening accuracy to that obtained from CSF analyses

    The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure

    Get PDF
    We have recently discovered that the two tryptophans of human β2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of β2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of β2-microglobulin with respect to these residues

    Human plasma protein N-glycosylation

    Full text link

    Identification of N-Monoacetylcystine in Uraemic Plasma

    No full text
    • …
    corecore