340 research outputs found

    Formalisation du capital environnemental et projet de territoire : le cas des BiosphÀrenparks autrichiens

    Get PDF
    Les BiosphĂ€renparks autrichiens, territoires distinguĂ©s par un label de l’UNESCO pour leur gestion « durable », peuvent ĂȘtre efficacement analysĂ©s Ă  travers la notion de « capital environnemental ». Celle-ci permet d’englober l’ensemble des valeurs, notamment non-Ă©conomiques, attribuĂ©es aux objets de nature d’un espace donnĂ©, et surtout les relations sociales et culturelles qui Ă©laborent ces valeurs. Nous tentons ici de montrer la pertinence d’une telle approche, relationnelle, constructiviste et holiste, pour la comprĂ©hension des projets de dĂ©veloppement des territoires ruraux. Les BiosphĂ€renparks constituent en effet une plate-forme de coordination des efforts de formalisation d’un capital environnemental ; nous entendons par lĂ  la mise en correspondance des valeurs et des objets Ă  travers la diffusion de discours sur le territoire

    The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model

    Get PDF
    Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency

    The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome

    Get PDF
    Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome

    Warburg-like effect is a hallmark of complex I assembly defects

    Get PDF
    Due to its pivotal role in NADH oxidation and ATP synthesis, mitochondrial complex I (CI) emerged as a crucial regulator of cellular metabolism. A functional CI relies on the sequential assembly of nuclear- and mtDNA-encoded subunits; however, whether CI assembly status is involved in the metabolic adaptations in CI deficiency still remains largely unknown. Here, we investigated the relationship between CI functions, its structure and the cellular metabolism in 29 patient fibroblasts representative of most CI mitochondrial diseases. Our results show that, contrary to the generally accepted view, a complex I deficiency does not necessarily lead to a glycolytic switch, i.e. the so-called Warburg effect, but that this particular metabolic adaptation is a feature of CI assembly defect. By contrast, a CI functional defect without disassembly induces a higher catabolism to sustain the oxidative metabolism. Mechanistically, we demonstrate that reactive oxygen species overproduction by CI assembly intermediates and subsequent AMPK-dependent Pyruvate Dehydrogenase inactivation are key players of this metabolic reprogramming. Thus, this study provides a two-way-model of metabolic responses to CI deficiencies that are central not only in defining therapeutic strategies for mitochondrial diseases, but also in all pathophysiological conditions involving a CI deficiency

    Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277

    Get PDF
    The Andean common bean AND 277 has the Co-14 and the Phg-1 alleles that confer resistance to 21 and eight races, respectively, of the anthracnose (ANT) and angular leaf spot (ALS) pathogens. Because of its broad resistance spectrum, Co-14 is one of the main genes used in ANT resistance breeding. Additionally, Phg-1 is used for resistance to ALS. In this study, we elucidate the inheritance of the resistance of AND 277 to both pathogens using F2 populations from the AND 277 × Rudá and AND 277 × Ouro Negro crosses and F2:3 families from the AND 277 × Ouro Negro cross. Rudá and Ouro Negro are susceptible to all of the above races of both pathogens. Co-segregation analysis revealed that a single dominant gene in AND 277 confers resistance to races 65, 73, and 2047 of the ANT and to race 63-23 of the ALS pathogens. Co-14 and Phg-1 are tightly linked (0.0 cM) on linkage group Pv01. Through synteny mapping between common bean and soybean we also identified two new molecular markers, CV542014450 and TGA1.1570, tagging the Co-14 and Phg-1 loci. These markers are linked at 0.7 and 1.3 cM, respectively, from the Co-14/Phg-1 locus in coupling phase. The analysis of allele segregation in the BAT 93/Jalo EEP558 and California Dark Red Kidney/Yolano recombinant populations revealed that CV542014450 and TGA1.1570 segregated in the expected 1:1 ratio. Due to the physical linkage in cis configuration, Co-14 and Phg-1 are inherited together and can be monitored indirectly with the CV542014450 and TGA1.1570 markers. These results illustrate the rapid discovery of new markers through synteny mapping. These markers will reduce the time and costs associated with the pyramiding of these two disease resistance genes

    Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus

    Get PDF
    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled by genotype I + bc-3 was combined in the fabada line A3308

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    The Cherenkov Telescope Array Large Size Telescope

    Full text link
    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Summary of the BDS and MDI CLIC08 Working Group

    Get PDF
    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis
    • 

    corecore