37 research outputs found

    Estudos transcriptômicos no contexto da conectividade perturbada em esquizofrenia

    Get PDF
    Esquizofrenia é uma severa doença neurobiológica com fatores genéticos e ambientais desempenhando um papel na fisiopatologia. Diversas regiões cerebrais têm sido implicadas no processo da doença e estão conectadas em complexos circuitos neuronais. Nos níveis molecular e celular, a conectividade afetada entre essas regiões, envolvendo mielinização disfuncional dos axônios neuronais, bem como as alterações no nível sináptico e metabolismo energético levando a distúrbios na plasticidade sináptica, são os maiores achados em estudos post-mortem. Estudos de microarranjos investigando a expressão gênica contribuíram para os achados de alterações em vias complexas em regiões cerebrais relevantes na esquizofrenia. Além disso, estudos utilizando microdissecção e captura a laser permitiram a investigação da expressão gênica em grupos específicos de neurônios. Entretanto, deve ser mantido em mente que em estudos post-mortem, confusos efeitos de medicação, qualidade de RNAm, bem como capacidade de mecanismos regenerativos neuroplásticos do cérebro em indivíduos com história de vida de esquizofrenia, podem influenciar o complexo padrão de alterações no nível molecular. Apesar dessas limitações, estudos transcriptômicos livres de hipóteses em tecido cerebral de pacientes esquizofrênicos oferecem uma possibilidade única para aprender mais sobre os mecanismos subjacentes, levando a novas ópticas da fisiopatologia da doença.Schizophrenia is a severe neurobiological disease with genetic and environmental factors playing a role in the pathophysiology. Several brain regions have been implicated in the disease process and are connected in complex neuronal circuits. On the cellular and molecular level, affected connectivity between these regions, involving dysfunctional myelination of neuronal axons, as well as alterations on the synaptic level and energy metabolism of neurons leading to disturbances in synaptic plasticity are major findings in post-mortem studies. Microarray studies investigating genome-wide gene expression have contributed to the findings of alterations in complex pathways in relevant brain regions in schizophrenia. Moreover, first Laser-capture Microdissection studies allowed the investigation of gene expression in specific groups of neurons. However, it must be kept in mind that in post-mortem studies confounding effects of medication, mRNA quality as well as the capability of the brain for neuroplastic regenerative mechanisms in individuals with a lifetime history of schizophrenia may influence the complex pattern of alterations on the molecular level. Despite these limitations, hypothesis-free transcriptome studies in brain tissue from schizophrenia patients offer a unique possibility to learn more about underlying mechanisms, leading to new insights in the pathophysiology of the disease

    Growth control of cultured microglia

    Get PDF
    Microglia, the resident macrophages of the brain, typically react to injuries or chronic diseases with proliferation and expression of differentiated features, such as production of cytokines associated with inflammatory events. Regulation and control of microglial cytokine expression, therefore, is a major focus of scientific interest. It has been shown that GMCSF and Il-3 are potent mitogens for microglia. Moreover, Il-3 and other cytokines are products of microglia. It is shown here that interleukin-1 (Il-1) as well as tumor necrosis factor (TNF alpha) increased microglial proliferation in mixed astrocyte-microglial cultures but had no mitogenic effects on isolated microglia. Lipopolysaccharide (LPS), the bacterial endotoxin, irreversibly inhibited microglial cell division in both mixed astrocyte-microglial cultures and in isolated microglial cultures. By contrast, the corticosteroids hydrocortisone and aldosterone and the synthetic glucocorticoid dexamethasone reversibly inhibited microglial proliferation. They also antagonized the stimulatory effects of Il-3 and granulocyte macrophage colony-stimulating factor (GMCSF). Estradiol and progesterone had no significant effects on mixed cultures but inhibited microglial proliferation in isolated cultures. Conditioned media from mixed cultures, isolated cultures, from the WEHI-2B cell line, or from fresh (serum-supplemented) media stimulated microglial proliferation to various extents. In summary, cytokine-mediated microglial proliferation can be down-regulated by a variety of steroid hormones. Along with their unimpaired access to brain cells in general, corticosteroids likely maintain an inhibitory tonus on microglial proliferation. It is hypothesized that this inhibition is overcome locally and temporally in brain injury and repair

    Connexin-Mediated Signaling at the Immunological Synapse

    No full text
    The immunological synapse (IS) is an intercellular communication platform, organized at the contact site of two adjacent cells, where at least one is an immune cell. Functional IS formation is fundamental for the modulation of the most relevant immune system activities, such as T cell activation by antigen presenting cells and T cell/natural killer (NK) cell-mediated target cell (infected or cancer) killing. Extensive evidence suggests that connexins, in particular connexin-43 (Cx43) hemichannels and/or gap junctions, regulate signaling events in different types of IS. Although the underlying mechanisms are not fully understood, the current evidence suggests that Cx43 channels could act as facilitators for calcium ions, cyclic adenosine monophosphate, and/or adenosine triphosphate uptake and/or release at the interface of interacting cells. These second messengers have relevant roles in the IS signaling during dendritic cell-mediated T and NK cell activation, regulatory T cell-mediated immune suppression, and cytotoxic T lymphocyte or NK cell-mediated target tumor cell killing. Additionally, as the cytoplasmic C-terminus domain of Cx43 interacts with a plethora of proteins, Cx43 may act as scaffolds for integration of various regulatory proteins at the IS, as suggested by the high number of Cx43-interacting proteins that translocate at these cell-cell interface domains. In this review, we provide an updated overview and analysis on the role and possible underlying mechanisms of Cx43 in IS signaling.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1171213 11160380 Millennium Science Initiative from the Ministry for the Economy, Development and Tourism P09/016-

    Interaction of protein kinases A and C in their effects on the proenkephalin gene in astroglial cells

    Full text link
    In several cell types, the expression of the proenkephalin (PEnk) gene is enhanced after activation of protein kinase A. In the present study, astroglial cells cultured from rat cortex were used to investigate whether protein kinases A and C can act in a synergistic manner on the endogenous proenkephalin gene. The activator of protein kinase C tetradecanoylphorbolacetate (0.001–1 μM) increased the level of proenkephalin-mRNA in a concentration dependent manner. When used together with the phosphodiesterase inhibitor Rolipram (1 μM), the effect of tetradecanoylphorbolacetate (0.01 μM) was potentiated. 8-Bromoadenosine 3′,5′-cyclic monophosphate (0.01–1 mM) also enhanced the expression of the proenkephalin gene. When used together with tetradecanoylphorbolacetate (0.01 and 0.1 μM), respectively, both agents had additive effects. Inhibition of protein synthesis with cycloheximide (35 μM) significantly changed the effects of both agents. While the effect of 8Br.cAMP (1 mM) on PEnk-mRNA was enhanced, that of tetradecanoylphorbolacetate (0.1 μM) was abolished. The results provide evidence for a synergistic effect of protein kinase A and C on the expression of the proenkephalin gene in astroglial cells. However, the protein kinases seem to act via different transcription factors on the expression of the proenkephalin gene
    corecore