805 research outputs found

    Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century

    Get PDF
    This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.The effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Global Environmental Model, version 2 (Earth System) (HadGEM2-ES); and Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM)—reveal statistically significant changes in mean annual surface air temperature. In addition, changes in land surface albedo, available energy, and latent heat fluxes are small but significant for most ESMs in regions affected by land-use changes. These climatic effects are relatively small, as land-use changes in the RCP2.6 and RCP8.5 scenarios are small in magnitude and mainly limited to tropical and subtropical regions. The relative importance of the climatic effects of land-use changes is higher for the RCP2.6 scenario, which considers an expansion of biofuel croplands as a climate mitigation option. The underlying similarity among all models is the loss in global land carbon storage due to land-use changes.We acknowledge the World Climate Research Programme Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We thank Karl Taylor and Charles Doutriaux for help with setting up the CMOR tables for the LUCID–CMIP5 experiments. We appreciate a support by the staff of the German Climate Computing Center (DKRZ), in particular by Stephanie Legutke and Estanislao Gonzalez, in performing the LUCID–CMIP5 simulations and in making the model results available via DKRZ ESG gateway. We thank Andy Pitman and an anonymous reviewer for providing constructive and helpful comments on the manuscript. CDJ was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). EK was supported by the Environmental Research and Technology Development Fund (S-5, S-10) of the Ministry of the Environment, Japan. PF and FP were supported by the EU-FP7 COMBINE project (Grant 226520)

    Pomeron in diffractive processes γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p at large Q^2: the onset of pQCD

    Full text link
    We study the reactions γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p at large Q^2 and W2/Q2W^2/Q^2 and small momentum transfer, κ2\kappa^2_\perp, to the nucleon where the pomeron exchange dominates. At large Q^2 the virtual photon selects a hard qqˉq\bar q pair, thus selecting the hard pomeron component (the BFKL pomeron). The amplitudes for both transverse and longitudinal polarizations of the initial photon and outgoing ρ\rho-meson (photon) are calculated in the framework of the BFKL pomeron exchange. Our calculations show that one cannot expect the early onset of the pure perturbative regime in the discussed diffractive processes: the small interquark distances, ρqqˉ<0.2\rho_{q\bar q} <0.2 fm, start to dominate not earlier than at Q2100GeV2,W2/Q2107Q^2 \simeq 100 GeV^2, W^2/Q^2 \simeq 10^7 in γ(Q2)pρ0p\gamma^*(Q^2)p\to\rho^0 p and Q250GeV2,W2/Q2106Q^2 \simeq 50 GeV^2, W^2/Q^2 \simeq 10^6 in γ(Q2)pγ(Q2)p\gamma^*(Q^2)p\to\gamma^*(Q^2) p.Comment: 20 pages, LaTeX, epsfig.st

    Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study

    Get PDF
    Seven climate models were used to explore the biogeophysical impacts of human-induced land cover change (LCC) at regional and global scales. The imposed LCC led to statistically significant decreases in the northern hemisphere summer latent heat flux in three models, and increases in three models. Five models simulated statistically significant cooling in summer in near-surface temperature over regions of LCC and one simulated warming. There were few significant changes in precipitation. Our results show no common remote impacts of LCC. The lack of consistency among the seven models was due to: 1) the implementation of LCC despite agreed maps of agricultural land, 2) the representation of crop phenology, 3) the parameterisation of albedo, and 4) the representation of evapotranspiration for different land cover types. This study highlights a dilemma: LCC is regionally significant, but it is not feasible to impose a common LCC across multiple models for the next IPCC assessment

    Search for Doubly-Charged Higgs Boson Production at HERA

    Get PDF
    A search for the single production of doubly-charged Higgs bosons H^{\pm \pm} in ep collisions is presented. The signal is searched for via the Higgs decays into a high mass pair of same charge leptons, one of them being an electron. The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment at HERA. No evidence for doubly-charged Higgs production is observed and mass dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only decays into an electron and a muon via a coupling of electromagnetic strength h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3, masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Searches at HERA for Squarks in R-Parity Violating Supersymmetry

    Get PDF
    A search for squarks in R-parity violating supersymmetry is performed in e^+p collisions at HERA at a centre of mass energy of 300 GeV, using H1 data corresponding to an integrated luminosity of 37 pb^(-1). The direct production of single squarks of any generation in positron-quark fusion via a Yukawa coupling lambda' is considered, taking into account R-parity violating and conserving decays of the squarks. No significant deviation from the Standard Model expectation is found. The results are interpreted in terms of constraints within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM and the minimal Supergravity model, and their sensitivity to the model parameters is studied in detail. For a Yukawa coupling of electromagnetic strength, squark masses below 260 GeV are excluded at 95% confidence level in a large part of the parameter space. For a 100 times smaller coupling strength masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
    corecore