64 research outputs found

    Vibrations and hydrogen bonding in porphycene

    Get PDF
    Combined use of IR, Raman, neutron scattering and fluorescence measurements for porphycene isolated in helium nanodroplets, supersonic jet and cryogenic matrices, as well as for solid and liquid solutions, resulted in the assignments of almost all of 108 fundamental vibrations. The puzzling feature of porphycene is the apparent lack of the N–H stretching band in the IR spectrum, predicted to be the strongest of all bands by standard harmonic calculations. Theoretical modeling of the IR spectra, based on ab initio molecular dynamics simulations, reveals that the N–H stretching mode should appear as an extremely broad band in the 2250–3000 cm−1 region. Coupling of the N–H stretching vibration to other modes is discussed in the context of multidimensional character of intramolecular double hydrogen transfer in porphycene. The analysis can be generalized to other strongly hydrogen-bonded systems

    Spectroscopic and microscopic investigations of tautomerization in porphycenes: condensed phases, supersonic jets, and single molecule studies

    No full text
    We describe various experimental approaches that have been used to obtain a detailed understanding of double hydrogen transfer in porphycene, a model system for intramolecular hydrogen bonding and tautomerism. The emerging picture is that of a multidimensional tautomerization coordinate, with several vibrational modes acting as reaction-promoters or inhibitors through anharmonic intermode coupling. Tunnelling processes, coherent in the case of isolated molecules and incoherent in condensed phases, are found to play a major role even at elevated temperatures. Single-molecule spectroscopy studies reveal large fluctuations in hydrogen transfer rates observed over time for the same chromophore. Scanning probe microscopy is employed to directly observe the structure and tautomerization dynamics of single molecules adsorbed on metal surfaces and demonstrates how the interactions of the molecules with atoms of the supporting surface affect their static and dynamic properties: different tautomeric forms are stabilized for molecules depending on the surface structure and the reaction mechanism can also change, from a concerted to a stepwise transfer. The scanning probe microscopy studies prove that tautomerization in single molecules can be induced by different stimuli: heat, electron attachment, light, and force exerted by the microscope’s tip. Possible applications utilizing tautomerism are discussed in combination with molecular architectures on surfaces, which could pave the way for the development of single-molecule electronics

    Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Get PDF
    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis → cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ∼23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans → cis conversion occurs spontaneously at 5 K and the cis → cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence of trans and cis configurations in the STM images is explained either by the rapid tautomerization rate or the similar character of the molecular frontier orbitals of the trans and cis configurations
    • …
    corecore